
Com-plete

Application Programming

Version 6.2.1

-1

Cover PageCom-plete 6.2.1 Application Programming

This document applies to Com-plete Version 6.2.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© March 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of
Software AG. Other products and company names mentioned herein may be the trademarks of their
respective owners.

0

Com-plete 6.2.1 Application ProgrammingCover Page

Table of Contents

................ 1Application Programming

................ 1Application Programming

.................. 2API Conventions

.................. 2API Conventions

................. 2Syntax Symbols

................. 2Argument Coding

................. 3Interface Linkage

.................. 3Return Codes

................. 4Introduction to the API

................. 4Introduction to the API

............. 5Application Programming in Com-plete

............. 5Application Programming in Com-plete

................ 5How Com-plete Works

................... 5Threads

................ 5Rolling Mechanism

.............. 5COM-PASS Considerations

.............. 6Write Conversational Calls

.......... 6Specific Programming Language Considerations

.................. 6NATURAL

................... 7COBOL

.................. 7COBOL II

................... 7PL/I

................ 8FORTRAN Notes

.................. 8Assembler

............. 10The Application Programming Interface

............. 10The Application Programming Interface

................... 10Overview

......... 10Requirements for Using the Branch Entry Interface

............ 11Differences with the Original Interface

................. 11Relocation Issues

.......... 11Assembler Programs Using the MCALL Interface

............ 11How to use the Branch Entry Interface

............... 12Maintaining Re-entrancy

........... 12Mixing the Branch Entry and SVC Interfaces

........... 12Globally Changing MCALLs for a Module

................ 13Macro Descriptions

........... 14The High Level Language Interface (HLLI)

............... 16Terminal Functions and Paging

............... 16Terminal Functions and Paging

................. 17Terminal I/O Functions

................ 17Terminal I/O Functions

................... 17Concepts

............... 18Programming Considerations

................. 18Program Logic

................. 19Output Options

.............. 203270 Terminal I/O Handling

................. 21Delimiter Lists

i

Table of ContentsCom-plete 6.2.1 Application Programming

.................. 22Terminal Mapping

................... 23Map Contents

................... 24Map Names

........... 24Device-Specific Mapping and Scaled Mapping

.................. 25Program Concepts

................ 31Map Creation Using Macros

.................. 35Advanced Facilities

.................. 35Structured Fields

.................. 36Periodic Redisplay

.................... 36Time-out

................ 36LU6.2 Transaction Programs

................... 37Restrictions

..................... 37Syntax

.............. 37Device-Independent Input: READ

.............. 37Device-Dependent Input: READS

................ 38Input Using Map: READM

.............. 39Device-Independent Output: WRT

.............. 40Device-Dependent Output: WRTS

................... 40Special Output

................ 41Output Using Map: WRTM

................ 43Extended Graphics Support

................... 43Symbol Sets

................. 43Loading Symbol Sets

.................... 44Examples

............. 44Example 1 - Terminal-Independent I/O

......... 47Example 2 - Terminal-Independent I/O using delimiter list

............. 49Example 3 - Terminal-Dependent Output

.............. 50Example 4 - Terminal I/O using Map

................. 53Example 5 - LU6.2 TP

.................... 56Terminal Paging

................... 56Terminal Paging

.................... 56Overview

................... 57POPEN Function

................... 58PWRT Function

.................. 60PREAD Function

.................. 61PLIMIT Function

............ 64Storage Access Functions and Task Management

............ 64Storage Access Functions and Task Management

............. 65Adabas & External Storage Access Functions

............. 65Adabas & External Storage Access Functions

................... 66VSAM File I/O

............... 66File Definitions to Com-plete

................ 67File Definitions in Programs

................. 67File OPEN Statements

.................. 68File I/O Operations

................. 69File CLOSE Statements

.............. 69ISAM & BDAM File I/O (MVS Only)

................. 70Request Parameter List

............... 70TFDEQ Function (MVS Only)

............... 71TFENQ Function (MVS Only)

............... 72TFGET Function (MVS Only)

ii

Com-plete 6.2.1 Application ProgrammingTable of Contents

............... 74TFGETU Function (MVS Only)

............... 76TFPUT Function (MVS Only)

............... 79TFPUTU Function (MVS Only)

..................... 80SD Files

.................. 82SDOPEN Function

.................. 85SDWRT Function

.................. 86SDREAD Function

.................. 88SDCLOS Function

.................. 89SDDEL Function

.................. 90CAPTUR Function

.................. 92ADABAS Interface

................ 92Multiple ADABAS Nuclei

................. 92Return Codes Abends

................... 93Task Management

................... 93Task Management

.................. 94ATTACH Function

.................. 96CODEL Function

.................. 97COEXIT Function

.................... 97Abends

.................. 97COLINK Function

.................. 99COLOAD Function

.................. 101COXCTL Function

................... 102FETCH Function

................... 103LOAD Function

.................. 105SCHED Function

.............. 108Message Switching and Printout Spooling

.............. 108Message Switching and Printout Spooling

............... 109Message Switching/Printout Spooling

............... 109Message Switching/Printout Spooling

.................... 109Overview

.................. 110Message Switching

................. 110Message Segmentation

.................. 110Destination Codes

................... 110Class Codes

.................. 112Message Routing

................. 113Alternate Terminals

.................. 114Disabled Terminals

................. 114Inoperative Terminals

.................. 114Message Recovery

............ 115Message Switching Control Block (MESGCB)

................. 115MESGSW Function

.................. 117Printout Spooling

.................. 118Destination Codes

................... 118Class Codes

............ 119Disabled, Inoperative, and Alternate Terminals

.............. 119Printout Spool Control Block (PSCB)

.................. 120PSOPEN Function

.................. 121PSPUT Function

.................. 122PSCLOS Function

iii

Table of ContentsCom-plete 6.2.1 Application Programming

........... 124NSPOOL - Printout Spooling With Natural Front-End

........... 124NSPOOL - Printout Spooling With Natural Front-End

.................... 124Overview

................. 125NATURAL Front-end

............... 125NATURAL Security Definitions

............. 125NSPOOL Definitions and Authorizations

................... 125Printer Groups

.................. 126User Authorization

................. 130Input Interdependencies

................. 131Default Authorization

................. 131NSPOOL User Functions

............... 132General PF Key Assignments

.................... 132List Queue

.................. 137Printer Overview

....... 141NSPOOL Display Printout on Screen (SHOW or QUEUE Function)

................... 142Customization

.................. 142Parameter Areas

.............. 145Supported Functions and Subfunctions

.............. 145General Programming Considerations

.................. 146Printer Overview

................... 147Operate Printer

................ 148Position Current Printout

................. 149List Queue Overview

.................. 152Printout Display

................. 152Modify Queue Entry

............. 155Miscellaneous Functions and Function Tables

............. 155Miscellaneous Functions and Function Tables

.................. 156Miscellaneous Functions

.................. 156Miscellaneous Functions

.................. 157ABEND Function

.................. 158ABEXIT Function

.................. 159CMPOST Function

.................. 159CMWAIT Function

................. 160COMSTOR Functions

.................. 162CSC Control Block

................... 163DATE Function

................... 164EOJ Function

................. 165FREEMAIN Function

.................. 166GETCHR Function

.................. 167GETMAIN Function

.................. 168GETSTOR Function

.................. 169MODIFY Function

................... 172RJE Function

.................. 173ROLEVT Function

.................. 174ROLOUT Function

.................. 175SETEID Function

................... 178SNAP Function

.................. 178TESTAT Function

................... 179TIME Function

iv

Com-plete 6.2.1 Application ProgrammingTable of Contents

.............. 181Mapping Request Control Block (MRCB)

.............. 181Mapping Request Control Block (MRCB)

.................. 184Mrcb Exception Codes

.................. 184Mrcb Exception Codes

................. 185Field Control Table (FCT)

................. 185Field Control Table (FCT)

.................. 187Field Descriptor Codes

.................. 187Field Descriptor Codes

.................. 188Terminal Control Codes

.................. 188Terminal Control Codes

.................. 189Request Parameter List

.................. 189Request Parameter List

.................. 190Type Access Field

................... 190Key Option Field

.................. 191Captur Record Header

.................. 191Captur Record Header

............. 192Message Switching Control Block (MESGCB)

............. 192Message Switching Control Block (MESGCB)

............... 194Printout Spool Control Block (PSCB)

............... 194Printout Spool Control Block (PSCB)

................. 196Getchr Information Table

................. 196Getchr Information Table

........... 198Com-plete Functions For Batch And Online Programs

........... 198Com-plete Functions For Batch And Online Programs

................. 199Terminal Device Type Codes

................. 199Terminal Device Type Codes

v

Table of ContentsCom-plete 6.2.1 Application Programming

Application Programming
This documentation is a reference guide for Com-plete application programmers. It contains all the
information necessary to write online and batch programs in the Com-plete environment.

Com-plete provides a wide range of functions for the application programmer. The description of each
Com-plete function in this documentation follows the same pattern. Each description consists of:

A general description of the function;

A description of the function statement format according to the syntax convention;

Return codes pertinent to the function;

Possible abnormal terminations and their cause(s).

The Com-plete Application Programmer information is organized as follows:

Introduction to the API Introduction to application programming using
Com-plete functions

Terminal Functions and
Paging

Describes functions related to terminals and terminal
paging.

Storage Access Functions
and Task Management

Describes functions relating to access to external storage
systems (including Adabas), as well as task managment
functions.

Message Switching and
Printout Spooling

Describes functions relating to message switching and
printout spooling functions (including NSPOOL).

Miscellaneous Functions
and Function Tables

Describes miscellaneous functions and presents various
control blocks and code tables.

1

Application ProgrammingCom-plete 6.2.1 Application Programming

API Conventions
Standard conventions are used throughout this documentation in the descriptions of the various Com-plete
functions. The conventions used are categorized as follows:

Syntax Symbols

Argument Coding

Interface Linkage

Return Codes

Syntax Symbols

In the descriptions of function statement format, arguments enclosed in square brackets, [], are Optional.
However, an argument enclosed in square brackets can only be omitted if it is the last argument in the
argument list. Com-plete handling requires that an optional argument which is not the last argument in the
list must still be included. In this situation, the argument name should reference a field that contains zeros
or blanks, depending upon whether the field is numeric or alphanumeric.

The following format statement illustrates the use of square brackets to indicate optional arguments.

function (retcode,argument1,
 [,argument2]
 [,argument3])

This means that argument3 can be omitted, and if argument2 is not required, you must give it a dummy
value as described above.

If two or more options enclosed within a single set of brackets are separated by a vertical bar, |, only one
of the options must be coded.

Curly braces, { }, indicate that one of the enclosed items separated by a vertical bar(s), |, is mandatory.

The following format statement illustrates the use of curly braces and vertical bars to describe mandatory
items.

WRT {C|D|R}(....)

This means that the choice of function is determined by the specified suffix (enclosed within braces) to the
character string WRT (that is, function WRTC, WRTD, or WRTR).

Note:
Do not type square brackets, curly braces or vertical bars as part of the function statement.

Argument Coding

Com-plete function names and their corresponding arguments are used to specify the services and options
to be performed. The following general rules summarize the coding conventions followed throughout this
documentation:

2

Com-plete 6.2.1 Application ProgrammingAPI Conventions

Rule 1: You code CALL statements to a subroutine with the function name.

Rule 2: Arguments are positional and must be coded in the order given.

Interface Linkage

All programs, except NATURAL, which use Com-plete functions must be linked with the appropriate
interface routines.

Online applications:
Online applications must be linked with the Com-plete interface modules which were loaded to a data set
during Com-plete installation. There is a separate interface module for each individual function.

Batch applications:
Batch applications must be linked with the module COMPBTCH, supplied on the Com-plete load library,
which contains entry points for all Com-plete functions allowed from a Batch environment.Com-plete
Functions For Batch And Online Programs lists the Com-plete functions which are available from Batch.

For further information on how to run Batch programs, refer to the Batch section of the Com-plete System
Programmer’s documentation.

Return Codes

Most Com-plete functions cause a return code to be issued at completion of their operation. The return
code is placed in the first argument of the CALL statement.

Return codes supply information to the application program that can be used to determine the further
course of program execution. For example, the following return codes are given in response to a terminal
read request:

0 Data read equals that requested.

4 More data is available to read.

8 Less data was read than requested.

3

API ConventionsCom-plete 6.2.1 Application Programming

Introduction to the API
Application programs perform Com-plete functions by calling Com-plete subroutines from the distributed
subroutine library.

High level languages such as NATURAL, COBOL, PL/I, and FORTRAN use a CALL statement.
Assembler programs can use the CALL macro provided by the operating system or an operating
system-independent CM$CALL macro distributed with Com-plete.

COBOL, PL/I, FORTRAN, and Assembler programs are link edited with routines from the distributed
library.

In all cases, the subroutines use standard linkage conventions.

This part of the Application Programmer’s documentation introduces you to the way Com-plete handles
user programs, points to some language-specific considerations, and describes the API.

This information is organized under the following headings:

Application Programming in Com-plete

The Application Programming Interface

4

Com-plete 6.2.1 Application ProgrammingIntroduction to the API

Application Programming in Com-plete
This chapter covers the following topics:

How Com-plete Works

Specific Programming Language Considerations

How Com-plete Works
Online programs are initiated by request of a terminal user or by request of an executing online program.
The terminal user must type

* pgmname parameters

or invoke a program via the COM-PASS menu. In either case, *pgmname parameters, including any
terminal-dependent control characters, is placed into a terminal buffer associated with that terminal.
Com-plete searches for the load module pgmnam, allocates a thread, places the program into the thread (if
the program is not defined as RESIDENTPAGE or does not reside in the LPA/SVE), and then passes
control to that program. This root program can use those Com-plete functions available to it. The root
program terminates either by calling a Com-plete termination function (EOJ or WRTxD) or by returning
via the language-specific return mechanism (e.g., stop run, go back, return, etc.).

Threads

During execution, online programs reside in areas called threads. User threads are fixed in size and range
from a minimum of 8K to a maximum of 1008K below the 16 MB line. For each thread, a fixed-size
extension can be allocated above the 16 MB line. Note that load modules linked with OVERLAY cannot
be used with Com-plete.

Rolling Mechanism

Com-plete uses its own thread paging supervisor. Whenever an application program (or Com-plete utility)
running in a user thread issues a request for a terminal operation, ADABAS or ROLOUT function, the
Com-plete paging supervisor can be invoked. If another user is waiting for the thread, the entire contents
of the thread are paged out (ROLOUT) to a paging data set and the waiting application is paged in
(ROLIN). Because of the mechanics of the thread paging supervisor, each terminal can use its own copy
of a program and alleviate the need for writing reentrant programs.

Note that during a ROLOUT operation, the program/thread counters CPU time, REAL time and
ADABAS calls are reset.

COM-PASS Considerations

All programs that reside in the Com-plete program library can be invoked by the terminal user. The
following points should be considered to ensure that programs are not used by unauthorized users:

5

Application Programming in Com-pleteCom-plete 6.2.1 Application Programming

Main programs should be protected by the Com-plete Security System;

A subprogram that is COLOADed will not be security protected;

Any routine that is invoked from a terminal will always contain an ’*’ at the start of the input data
buffer;

COM-PASS checks the integrity of transactions only if the data buffer that is transferred with the
transaction begins with an asterisk (*);

A main program that fetches or attaches another should transfer a data buffer that does not start with
an asterisk (*) in order to distinguish it from a terminal call.

COM-PASS allows up to nine transactions per user to be defined under the control of transaction security.
This assumes that the User Profile definition option ’ALLOWED NON-MENU PROGRAMS’ is specified
as ’NO’.

Write Conversational Calls

Each transaction within COM-PASS can be suspended whenever the transaction contains a write
conversational (WRTC) call to Com-plete. COM-PASS provides a return code of 16 when the transaction
is restarted. To ensure the correct use of the COM-PASS Restart/Suspend facilities, each transaction that
contains a write conversational call should check for an RC=16. Programs that use writes without erase
should rebuild the entire screen whenever the program has been suspended.

Specific Programming Language Considerations
Each argument in a call to Com-plete must be defined with the data type required for that argument. The
data types used are:

Alphanumeric Fixed-length fields representing character data.NATURAL - (An).
COBOL - PICTURE X(n). PL/I - CHARACTER (n). Assembler - DC
CLn’ ’.

Binary
fullword

Four-byte fields representing a signed binary value. NATURAL - (B4).
COBOL - PICTURE S9(8) COMP. PL/I - FIXED BINARY (31).
Assembler - DC F’n’.

Binary
halfword

Two-byte fields representing a signed binary value. NATURAL - (B2).
COBOL - PICTURE S9(4) COMP. PL/I - FIXED BINARY(15).
Assembler - DC H’n’.

NATURAL

In general, NATURAL provides Com-plete functions to the programmer that are built into the
NATURAL language. For example, terminal I/O functions of Com-plete are implemented via the
NATURAL INPUT verb. Applications written in NATURAL should use the built-in facilities of
NATURAL wherever possible.

For access to a Com-plete function not directly available in the NATURAL language, code a CALL
statement to the Com-plete subroutine with the function’s name (for example, SDOPEN for SD file open).
The NATURAL CALL statement is equivalent to the function of COLINK; therefore, COLINK should

6

Com-plete 6.2.1 Application ProgrammingApplication Programming in Com-plete

never be called from NATURAL.

Com-plete functions are available to the NATURAL CALL statement, if those subroutines are cataloged
in the Com-plete program library or are placed into the RESIDENTPAGE portion of Com-plete.

COBOL

MVS COBOL programs should be compiled with options ’NOSTAE, NOSTATE, and ENDJOB’.

VSE COBOL programs should be compiled with control card:

CBL NOSTXIT,NOSTATE,NOCOUNT

and must not use LFOW or SYMDMP.

COBOL II

COBOL II enables you to generate reentrant code for the COBOL programs. This facility can be used to
its optimum effect with Com-plete. Programs that are reentrant can run as RESIDENTPAGE programs
within the Com-plete nucleus. Com-plete can also handle programs that run above the 16 MB line. Also,
the COBOL run time routines can be linked into one COBPACK which can also be RESIDENTPAGE or
in LPA. Com-plete can support this both below and above the 16 MB line as applicable.

You must choose the IGZTUNE parameters that these programs use when running under Com-plete. In
particular the INIBLOW and the INIABOV parameters, which indicate the amount of storage COBOL’s
storage management routines will receive at startup before doing anything else. As this storage is allocated
from thread, at least this amount must be available in the thead before the COBOL program can run. If
this storage is never used, then valuable thread and rollbuffer space will be wasted. We therefore
recommend that these are set to reflect the storage usage of the most of your COBOL programs (90% or
more) and let COBOL request the storage for the rest of the programs. This will simply result in a few
more getmain/freemain requests from the COBOL programs for which the allocated space is not enough.

Care should also be taken with the INIABOV parameter, as this storage is also allocated from thread and
therefore is not allocated above the 16 MB line. COBOL expects this GETMAIN to always work and so,
having issued a conditional GETMAIN to get the storage, proceeds to try to use the storage which may
not be there if the GETMAIN fails (as can happen under Com-plete if the catalog size for the program is
not large enough). This eventually results in a storage exception abend when COBOL tries to address
storage which is not addressable by your program. For this reason, we recommend that if unexplainable
COBOL addressing exceptions occur, this parameter should be set to 1, the Com-plete catalog size for the
program increased and the program tried once more.

PL/I

With the exception of the COLINK and COXCTL functions, Com-plete does not support PL/I dope
vectors; therefore, the declaration of the entry for a Com-plete function must specify the ASM option. In
addition, the EXTERNAL attribute must always be specified.

The ’NOREPORT’ compile option must not be used.

The COLINK and COXCTL functions must be defined with the attributes of the target program.

7

Application Programming in Com-pleteCom-plete 6.2.1 Application Programming

The following definition is recommended:

DCL function ENTRY EXTERNAL OPTIONS (ASM,INTER);
DCL IRETURN FIXED BIN(31) INITIAL (0);
DCL FIELD CHAR (10) INITIAL (’CONSTANT’);
CALL function (IRETURN, FIELD);

When calling a PL/1 subroutine from a PL/1 main program, the subroutine needs to be linked with the
entry point name the same as the subroutine name. This obtains the correct entry and prevents PL/1
repeatedly setting up the run-time environment. See the PL/1 Optimising Compiler Programmer’s Guide
for further information.

FORTRAN Notes

FORTRAN routines require privileged status. Catalog FORTRAN programs with the ULIB PV operand
(see the Com-plete Utilities documentation).

Assembler

CM$CALL

Assembler programmers have a choice of using the CALL macro distributed and documented for their
operating system or a CM$CALL macro distributed with Com-plete. The CM$CALL macro manages
operating system independent calls.

The format of the CM$CALL is:

CM$CALL ENTRY,PARMS,PLIST=

where:

ENTRY Required.

Name of routine. If (R15) is used, register 15 must have the address of the
subroutine.

PARMS Optional.

A list of parameters in parentheses separated by commas or null. If a list is
specified, each parameter must be a valid second operand of a load address
(LA) instruction.

PLIST Optional.

A valid second operand of a load address (LA) instruction or a
parenthesized register specification.

The parameter list for the CALL will be:

1. Null, if PARMS and PLIST are both absent.

2. Generated inline, if PARMS is specified, but not PLIST.

8

Com-plete 6.2.1 Application ProgrammingApplication Programming in Com-plete

3. Generated at a location specified by PLIST, if PARMS is specified.

4. Assumed to exist at a location specified by PLIST, if PARMS are not specified. The
end-of-parameter-list indicator must be set.

Be aware that Com-plete validates the parameter list. The last item in the parameter list must have the
end-of-parameter-list indicator set. The LV option must be specified in the MVS CALL macro in order to
set this indicator.

9

Application Programming in Com-pleteCom-plete 6.2.1 Application Programming

The Application Programming Interface
This chapter covers the following topics:

Overview

Assembler Programs Using the MCALL Interface

The High Level Language Interface (HLLI)

Overview
Due to the logic of the new dispatching mechanism, the Com-plete Application Programming Interface
(API) had to be redesigned for Com-plete 5.1. While the internal logic of the interface has changed
significantly, the usage of the interface has not. This was done to encourage users to convert their existing
applications to use the new interface.

While Software AG strongly advise that all applications be converted to use the new interface as soon as
possible, in order to facilitate conversion to Com-plete 5.1, a bridging mechanism has been provided
which enables application programs which worked under Com-plete 4.6 to function unchanged under
Com-plete 5.1. However, note that this bridging mechanism costs more in terms of resources than the new
interface.

Prior to this new interface being introduced, all Com-plete API calls entered the Com-plete nucleus using
a pseudo Supervisor Call (SVC) which was trapped by Com-plete. Changes made in versions 4.5 and 4.6
of Com-plete have facilitated the introduction of a branch entry mechanism to the API routines. Branch
entry to the nucleus is the major change which will effect currently running assembler applications
programs which used the MCALL interface. Applications correctly using the High Level Language
Interface (HLLI) as previously documented will not have to be changed at all as you will see later.

Note:
The term ’correctly’ above relates to the provision of an 18F savearea to the HLLI routine. Please refer to
the migration notes for Com-plete 5.1 for details of API functions that previously worked even if an 18F
savearea was not provided. All API functions now require an 18F savearea.

Requirements for Using the Branch Entry Interface

To use the branch entry interface, the following must be taken into account.

Register 13 must point to a standard 18F savearea which will be used to save and restore the
application program’s savearea.

Registers 14, 15, 0 and 1 will be changed by the call to the application programming interface.
Registers 2 to 13 will not be altered.

Under ESA Capable systems, Access Registers 1 to 15 will be returned unaltered to the application
program.

10

Com-plete 6.2.1 Application ProgrammingThe Application Programming Interface

Differences with the Original Interface

As you will see from the above, applications using the HLLI interface will not have to be changed as they
already have taken the above requirements into account. The changes that assembler programs must take
into account are as follows:

Registers 14 and 0 were generally returned intact to the application issuing the MCALL functions.
This will no longer be the case.

Register 13 did not have to point to a standard 18F savearea when issuing an MCALL function.

Relocation Issues

Programs which are relocatable and use branch entry to the new API will have to be aware of the
following.

Register 13 will always be relocated as it must be located in the application’s thread.

Register 14 will be relocated if it is located inside the application’s thread.

Assembler Programs Using the MCALL Interface

How to use the Branch Entry Interface

In order to use branch entry to the API, two new parameters (SAVEAREA and COMREGA) have been
added to the MCALL macro to determine how it will enter the Com-plete API. Note that an unchanged
program will always expand to use the SVC entry as branch entry will only be used if explicitly requested
on the MCALL or if globally set using the CMOPBE macro described later.

11

The Application Programming InterfaceCom-plete 6.2.1 Application Programming

SAVEAREA YES/NO Default: NO (unless previously specified in CMOPBE).

This parameter indicates whether the application has an 18F savearea
available at the point in the program where the MCALL is issued. When
’NO’ is specified, it indicates that no savearea is available and the old SVC
entry will be generated. When ’YES’ is specified, it indicates that an 18F
savearea is available and pointed to by register 13. Specifying ’YES’
ensures that the application program will branch enter the API. How this is
achieved is determined by the COMREGA parameter described below.

COMREGA YES/NO Default: NO (unless CMOPBE was specified previously).

This parameter indicates whether COMREG is addressable at the point in
the program where the MCALL macro is issued. It determines the manor in
which the API will be branch entered and is only applicable if SAVEAREA
is set to ’YES’. COMREGA=YES indicates that COMREG is addressable at
the point where the MCALL is issued and a USING is active on the
DCOMREG DSECT for the register pointing to COMREG (e.g. register 2).
This will cause the MCALL to expand to load the address of the Com-plete
API from COMREG and to branch directly to it. This saves the requirement
to link an additional stub module with the assembled module.

COMREGA=NO indicates that COMREG is not addressable and causes the
MCALL to expand loading the address of the entry point TLOPENT, again
only when SAVEAREA=YES is specified. This entry point is contained in
the module TLOPUSER therefore, this module must be linked with the load
module resulting from the assembly.

Maintaining Re-entrancy

The functions to get and free storage (i.e. MCALL GETMAIN and MCALL FREEMAIN) also require a
savearea to use the branch entry interface which leaves the programmer in a catch 22 situation when
trying to maintain re-entrancy in an assembler program. How can storage be acquired for a savearea if no
savearea exists? This is addressed through the provision of two macros called CMOPGETM and
CMOPFREM which are described below. Software AG recommends that these macros are only used
when absolutely necessary, i.e. to get working storage at the start of a program and free it at the end of the
program. In all other cases, the standard MCALL or HLLI functionality should be used.

Mixing the Branch Entry and SVC Interfaces

It is possible to mix branch entry calls to the interface with SVC entry calls, though this is not
recommended. While it is technically possible, it will lead to confusion in modules. You are
recommended to totally change a module to use the branch entry interface when it is being converted.

Globally Changing MCALLs for a Module

Where a module has been written according to normal IBM standards, it will generally comply with the
conditions for branch entering the API. For this case, a macro (CMOPBE) has been provided to change
the default for the entire module or for entire sections of a module. CMOPBE sets global indicators to
cause MCALLs following the invocation of this macro to expand based on the global specifications of the
CMOPBE macro. It is possible to invoke this macro a number of times to have different options for
different sections of the module, however, be aware that the MCALL will take it’s defaults from the last
invocation of the macrophysically preceding it in the assembler source.

12

Com-plete 6.2.1 Application ProgrammingThe Application Programming Interface

Macro Descriptions

CMOPBE - Set global indicators

Syntax:

CMOPBE SAVEAREA=YES/NO,COMREGA=YES/NO

Parameters

For a Description of SAVEAREA and COMREGA refer to the sectionHow to use the Branch
Entry Interfacein this Chapter.

CMOPGETM - Get storage

This macro will acquire storage for the requested length if it is available.

Syntax:

CMOPGETM LEN=length,COMREGA=YES/NO[,LOC=ANY|BELOW]

Parameters

LEN Required.

Amount of required storage. (see Note 1)

COMREGA Optional.

(See Note 3)

LOC Optional.

Location of storage requested. The default depends on the setting
of AMODE. With AMODE=24, the default is BELOW. With
AMODE=31, the drfault is ANY.

Return Codes:

0 Storage gotten successfully. The address will be returned in
Register 1

4 Storage unavailable in the thread.

8 Should not occur

12 Either the request is invalid or the FQE chain in the thread is
corrupted.

CMOPFREM - Free storage

Free storage previously acquired by a CMOPGETM request.

Syntax

13

The Application Programming InterfaceCom-plete 6.2.1 Application Programming

CMOPFREM LEN=length,ADDR=address,COMREGA=YES/NO

Parameters

LEN Required

Amount of storage to free. (see Note 1).

ADDR required

Address of the storage to free (see Note 2).

COMREGA Optional

(See Note 3)

Return Codes:

0 Storage freed successfully.

4 Should not occur

8 Space to be freed was not allocated

12 Either the request is invalid or the FQE chain in the thread is
corrupted.

Notes:

1. "length" can be specified as a numeric constant, a numeric equate, as register content or a
field containing the value.
Examples: LEN=200 specifies a length of 200 Bytes
LEN=(R3) length is contained in R3
LEN=(*,LENGTH) length is contained in field LENGTH

2. "address" is the name of a field at the start of the area to be freed. As "length" It can also be
specified in register or indirect field notation.
Examples: ADDR=START free storage from label START
ADDR=(R5) free storage addressed by R5
ADDR=(*,STOR) free storage addressed in field STOR

3. For a Description of COMREGA refer to the section How to use the Branch Entry
Interface in this Chapter.

The High Level Language Interface (HLLI)
Any programs using this interface to date will have fully compiled with the requirements for using branch
entry and therefore require no changes to their source code. To use the branch entry interface, they must
simply be linked with the stub module provided with Com-plete 5.1 called TLOPUSER. This module
contains entry points to resolve all of the HLLI functions which can be invoked which means that only
one module must now be included as against a module for each HLLI function which was invoked which
was previously the case.

Note that it is not possible to simply re-link a load module with TLOPUSER as the HLLI interface
routines previously included must first be deleted using the linkage editor REPLACE statement. While
simply linking in the new TLOPUSER will function correctly, the linkage editor will NOT delete

14

Com-plete 6.2.1 Application ProgrammingThe Application Programming Interface

references which were previously resolved using the older HLLI interface routines unless it is explicitly
told to do so.

Programs which are not re-linked will continue to function normally, however, as the older HLLI routines
used SVC entry to the nucleus, these routines will continue to experience the overhead of using this entry
to the interface.

15

The Application Programming InterfaceCom-plete 6.2.1 Application Programming

Terminal Functions and Paging
This part of the Application Programmer’s documentation covers functions related to terminals and
terminal paging.

This information is organized under the following headings:

Terminal I/O Functions

Terminal Paging

16

Com-plete 6.2.1 Application ProgrammingTerminal Functions and Paging

Terminal I/O Functions
This chapter covers the following topics:

Concepts

Programming Considerations

Terminal Mapping

Advanced Facilities

LU6.2 Transaction Programs

Syntax

Extended Graphics Support

Examples

Concepts
During processing, an online application program is connected to a logical unit (LU). The LU can
represent a terminal, either directly or indirectly, through another system (ACCESS, CICS Transaction
Routing), or another application program (APPC sessions). The application program communicates with
the LU by using Com-plete’s Terminal I/O Functions. For asynchronous (non interactive) communication
with terminals or network printers refer to theMessage Switching, Printout Spooling and Terminal Paging
sections in this documentation.

Communication with logical units is governed by conventions (protocols) that apply to each type of
logical unit. The Terminal I/O Functions handle the corresponding protocols for the supported LU types in
order to free the application program from controlling the sessions.

An application program communicates with an LU by using control commands contained in the data
stream that control the processing and formatting of data. Two ways of handling terminal control are
available for applications:

Device-Dependent I/O

Device-Independent I/O

Device-Dependent I/O

Device-Dependent I/O functions require the application program to to provide and manipulate
all terminal control characters for both input and output operations within the data stream itself.
These functions must be usedonly when a program is always executed from the same device
type or when the program itself is able to recognize the device type from which it was started.
Device-dependent I/O functions are READS and WRTS.

17

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

Device-Independent I/O

The Device-Independent I/O functions automatically supply the necessary control characters
and are useful when an application program can be called from different LU types. Output
formatting can be accomplished by inserting special characters in the output data stream. On
input Com-plete removes all control characters inserted by the terminal before the data is passed
to the application. The READ, WRT and WRTT functions provide device-independent I/O
support.

Terminal Mapping

The functions above require data formats to be defined internally - in the application program.
Every change in a field format or attribute requires modifications to the program. Input and
output data formats can also be defined externally to the application program, in a separate
module calledmap. The READM and WRTM functions use a map as basis of reference for field
layout and attributes (terminal control characters). An application can optionally override the
attributes defined in the map. Layouts and attributes can be changed without modifications to
the program.

Notes:

1. Device dependent and independent I/O functions work identically on LU6.2 sessions since
the LU6.2 data stream does not contain control characters. Any character in the stream is
treated as data.

2. Do not use Terminal Mapping functions in LU6.2 sessions.
3. Although output with option Done works similar to conversational, it is not possible to read

data since the program is terminated without getting control.
4. Output with Return option followed by EOJ will terminate the program but the last record

will not be readable by the operator the program is terminated just after displaying the
message.

5. For LU6.2 sessions a the Done option works similar to Return + EOJ since there is no way
to get a reply from the partner and the last record can be read normally at the other side.

6. The results of the carriage return character can be affected by theCR option in the TIB
macro. Refer to theTIBTABchapter in Com-plete System Programmers documentation for
more information.

7. For each New Line placed consecutively in the output buffer, a shift for the next new line
will be forced.

8. Delimiter lists cannot be used with the reread option
9. The Com-plete distribution source library contains sample delimiter lists for COBOL

(COBDLST), PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied
into the application program.

Programming Considerations

Program Logic

The Com-plete API makes handling of different protocols almost transparent to the application
programmer. It automatically inforces most protocol rules in order to avoid runtime errors so the program
design must take into account only the application requirements. It is important, however, to understand
the internal processing logic and restrictions of the used functions in order to get the desired results:

18

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Input functions do not cause any physical I/O to/from the partner LU; the data was already received
either at program startup or as a result of a previous output function. The previously received data is
just transfered from Com-plete’s buffers to the application program’s buffers. A location counter,
updated for every input request, is maintained to determine how much data from the input buffer was
already transferred to the application. The input buffer is freed only when the application received all
input data.

Output functions cause data/control information to be sent to the partner LU. The application is
ROLLed OUT and gets control only after completion of the request. Conversational requests are put
on the Ready To Run queue only after the reply data is received.

Input requests may be issued only after conversational output requests, except for the first input after
startup that returns the program name and initial data.

Com-plete’s buffer contents can be reread one or more times by specifying the reread option (suffix
R). The reread option will prevent updates to the location counter, so the next request will transfer
data starting at the same buffer location. Terminal dependent rereads must precede any terminal
independent request because the latter will translate all remaining data to device-independent format.

Output Options

All Output requests (except READB) must specify a suffix that indicates the processing logic for the
request. The suffix must be either:

R Return.
The application program’s thread is ROLLed OUT, the data is sent to the terminal
or partner LU but Com-plete keeps the right to send (no CD is sent). The
application program is placed in the ready to run queue just after output
completion. LU6.2 transaction programs remain in SEND State.

C Conversational.
The application program is ROLLed OUT, Com-plete sends the data and CD to the
terminal or partner LU that now can send data back to Com-plete. When the reply
is received the application program is put in the ready to run queue and can now
issue a READ to retrieve the received data. LU6.2 application programs are now in
RECEIVE state.

D Done.
This option works similar to a conversational output followed by EOJ. The
difference is that the application does not get control - it is terminated normally
after receipt of the operator reply. For LU6.2 sessions the conversation is
terminated (CEB), the user logged off and the TIB is removed from the TIBTAB.

Notes:

1. Although output with option Done works similar to conversational, it is not possible to read data
since the program is terminated without getting control.

2. Output with Return option followed by EOJ will terminate the program but the last record will not be
readable by the operator the program is terminated just after displaying the message.

3. For LU6.2 sessions a the Done option works similar to Return + EOJ since there is no way to get a
reply from the partner and the last record can be read normally at the other side.

4. The results of the carriage return character can be affected by theCR option in the TIB macro. Refer

19

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

to theTIBTABchapter in Com-plete System Programmers documentation for more information.
5. For each New Line placed consecutively in the output buffer, a shift for the next new line will be

forced.
6. Delimiter lists cannot be used with the reread option
7. The Com-plete distribution source library contains sample delimiter lists for COBOL (COBDLST),

PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied into the application program.

3270 Terminal I/O Handling

Device dependent I/O

When using device dependent I/O functions the application program must handle the whole data stream.
All control characters the device places in the data stream are passed to the program on input. The
program must also provide all control characters on output. Errors in control characters may cause
unpredictable results.

Com-plete provides special facilities and handling for programmers using device-dependent I/O with IBM
327x compatible terminals.

For ease of use, all 3270 buffer addresses are referred to in the form of 2-Byte binary items relative to zero
(16-bit addressing). Thus, row 1 column 1 is x’0000’, row 2 collumn 3 is x’0052’ (on 3270 model 2
terminals), etc... This holds true for both input and output. Com-plete translates all 12-bit row-column
addresses into binary buffer offsets.

For terminal dependent output to 327x devices, the 1st output character is taken from the Write Cotrol
Character (WCC). The WCC will not appear on the screen.

Only modified data fields from 3270 screens are read. On an initial input of a screen, the following data is
presented to the application program:

Field data is variable in length so the most convenient way to process it (without using maps) is probably
using a device dependent input (READS) with specifying X’11’ (SBA) as delimiter. This enables the
program to determine the exact data on a field by field basis. Refer to section Delimiter Listsin this
chapter for more details.

Device independent I/O

Application programs using device independent input will receive no control characters - all characters
will be removed before data is transfered to the application. Backspace processing is performed for
devices that transfer a backspace character (TTY devices).

For device independent output Com-plete supplies automatically all control characters required by the
device in use (at runtime). Data is written/displayed beginning at the upper left-most margin of the
page/left-hand corner of the screen using the maximum line length for the device. Outputs longer than 1
line continue on the next available lines. Further output formatting can be accomplished by using
embedded special characters:

20

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Character Meaning Action

X’00’ Null
Character

No formatting action on most devices.
Treated as space on some devices.

X’05’ Horizontal
Tab

Translated into appropriate code for hardcopy terminal
devices. Padding characters may be Required.
Some devices ignore this code in the data stream.

X’0C’ Form Feed Force a "Skip to Channel 1" condition.
Ignored if the device does not support form feed.

X’0D’ Carriage
Return

Carriage return without line feed.Treated as "new line" if the
device does not support the carriage return character.

X’15’ New Line Carriage return with line feed.

X’16’ Backspace
Character

Overlays the previous character written.
Accepted by most terminal devices.

X’25’ Line Feed Causes a space down condition without carriage return.

X’40’ Space Embedded spaces can be used to affect output formatting.

Notes:

1. The results of the carriage return character can be affected by theCR option in the TIB macro. Refer
to theTIBTABchapter in Com-plete System Programmers documentation for more information.

2. For each New Line placed consecutively in the output buffer, a shift for the next new line will be
forced.

3. Delimiter lists cannot be used with the reread option
4. The Com-plete distribution source library contains sample delimiter lists for COBOL (COBDLST),

PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied into the application
program.

Delimiter Lists

An Application Program may optionally specify a delimiter list - one or more delimiter characters that are
expected to be in the input data - instead of an amount of data to be read. Data is transferred up to (but not
including) the delimiter.

The delimiter list specified in the DLIST argument is a working storage area in the application program.
The format and contents of this area are illustrated in the following table:

Location Length Format Contents

0 2 Binary Number of Delimiters in this list.

0 2 Binary Number of Characters returned. Must be initialized to zeros

4 2 Binary Relative number of found delimiter in list.

6 2 Binary Delimiters to be used

21

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

Notes:

1. Delimiter lists cannot be used with the reread option
2. The Com-plete distribution source library contains sample delimiter lists for COBOL (COBDLST),

PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied into the application
program.

Example

Assuming that the application sets the number of delimiters to 2, the delimiter list contains a comma and a
period, and the data read by Com-plete that resides in the Com-plete buffer was:

JONES,JAMES ALFRED,719 HIGH ROAD.

the data returned to the application program by issuing a series of READ functions with the delimiter list
option specified would be:

Read Issued Data Read
Number
Returned

Delimiter Found

First read: JONES 5 1

Second read: JAMES ALFRED 12 1

Third read: 719 HIGH ROAD 13 2

Fourth read: - 0 0

Terminal Mapping
Mapping transforms data by using a table called a map. A map defines both the output and input
characteristics of a given terminal screen. The map is defined and stored external to the program as a
separate load module. In the process of mapping, data fields in the application program and fields in the
map are correlated with data fields on the terminal’s screen. The map uses two types of fields, constant
and variable. A "mapped terminal write" transfers constant fields from the map and variable fields from
the application program to the terminal. A "mapped terminal read" transfers those variable fields that have
been modified at the terminal to the application program. On output, the application program can override
various map characteristics such as field atributes, cursor location, sound alarm, etc. Modifications to field
attributes are done in reference to field names. Mapping optionally informs the application program, by
field name, of the fields read and the fields incorrectly entered at the terminal.

A map can be created using the UMAP utility (see the Com-plete Utilities documentation) or assembled
and linked using the mapping macros(see the section Map Creation Using the Macros later in this
chapter).

After the map has been created, the application program can perform terminal I/O using the map by
specifying:

1. Mapping Request Control Blocks (MRCBs)

2. The location of the desired data within the application program’s working storage area (optional)

22

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

3. The location of a Field Control Table (FCT) within the application program which contains field
names and dynamic modification of field display characteristics (optional)

The application program consideration(s) for using a map and the process of creating a map are discussed
in the remainder of this section. Further information on the use of the UMAP utility program can be found
in the Com-plete Utilities documentation.

Map Contents

A map contains two types of data: global data and field data. Some of the information contained within
the map may apply only to one type of 3270 (that is, the extended attributes of the 3279 graphics terminals
are ignored for non-graphics 3270 terminals of the same size).

Global Data

Global information pertains to how the mapping system will deal with the map as a whole. Global data
includes:

The map name - used to verify that the correct map is being used

The device code - used to signify the device type for which the map was designed

Terminal Control Codes (TCCs) - used to specify control options to be used by the mapping system
when using the map to write or read data such as Erase-the-Screen

Global extended 3279 graphics attributes

The TCCs within a map can be overridden at execution time by specifying overriding TCCs within a field
of the MRCB. The TCCs are defined inTerminal Control Codes. The extended graphics attributes can be
overridden by field in the map or, at execution time, by field in the FCT.

Field Data

Field information pertains to how the mapping system will deal with a specific field. A field within a map
can be defined as constant or variable.

A constant field is a field whose fixed text resides within the map. The application program cannot vary
the text sent to the terminal or receive the text received from the terminal; however, the application
program can modify the display characteristics of constant fields. Constant fields are used for displaying
text whose contents are independent of the programs executing (that is, titles of a screen and field
prompts).

A variable field is a field whose data resides within the application. Variable field data is moved by a
mapped write (WRTMC, WRTM) call from the application storage to the terminal screen. If the field is
defined as unprotected (that is, the data can be modified), the data entered on the screen can be returned to
the application program with a mapped read (READM) call.

Both constant and variable fields share the following characteristics:

An optional 6-byte field name;

23

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

A screen location and field length;

Field Description Codes (FDCs). The FDCs define the display and usage characteristics of a field. At
execution time, the FDCs can be altered by specifying an override in the Field Control Table. FDCs
describe characteristics such as high or normal display intensity, protected or unprotected. display or
non-display, and required or Optional.
Some FDCs are not valid for constant fields (e.g., unprotected, required, etc.). SeeField Descriptor
Codes for the definition of the FDCs;

Color code for 3279 graphics terminals;

Symbol set IDs for GDDM symbol set modules.

Variable fields have the following additional characteristics:

Data buffer offset. The location of the data to be extracted for the write and the location for returning
data from the terminal are determined by adding the data buffer offset to the address passed as the data
buffer argument;

Data types. Variable fields can be alphanumeric, zoned decimal, packed decimal, binary fullword, or
binary halfword;

Number of decimal places. The number of decimal places is used to display packed decimal, binary
fullword, or binary halfword fields;

Internal length. The internal length of packed decimal fields must be defined.

Map Names

The map is stored into the load library under a six-character name. The first four characters are the same
as those specified in the name field of the UMAP menu or the MAPSTART macro statement. The last two
characters are taken from the device code of the terminal for which the map was designed. UMAP
displays this device code after the name field or it is taken from the DEVCODE argument of the
MAPSTART macro.

For those applications/installations with performance problems due to excessive reloading of specific
maps, the map can be placed into the resident list of Com-plete. Mapping will search first the thread,
second the resident area of Com-plete, and finally the load library chain.

For maps accessed via the resident area of Com-plete that require scaling (see the following section),
mapping will copy the map to the thread temporarily, scale the map, use the map, and free the thread
storage.

Device-Specific Mapping and Scaled Mapping

This section describes the use of the device code and choice of using maps in a device-specific manner or
in a scaled manner. Terminal Device Type Codes gives the device codes associated with each screen size
of 3270 terminals.

Assume that your application uses only one screen. If this application program is required to operate from
only one specific terminal device type, the 24-line 80-column F2, then one map is Required.
You could name this map XXXXF2 and set the MRCB as follows:

24

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Map name is ’XXXX’.
Version is ’B’.
Filler is three spaces.
Mapvers is space. (See Mrcb Exception Codes for MRCB format)

Mapping concatenates the XXXX to the device type, resulting in XXXXF2. If the application is executed
from a different device type (for example, an F5), the application needs an XXXXF5 map with the same
field names and characteristics. These maps are device-specific; a unique map exists for each terminal
type, as necessary.

In some situations, having a unique map for each device type allows the application to display more data
on larger screens and less data on smaller screens.

Some applications take no advantage of the differences in 3270 screen sizes. If the screen layout of the
map fits within the dimensions of another device type, the application can request mapping to use map
XXXXF2 but scale the map to fit on the current device. To request scaling, set the MRCB as follows:

Map name is six characters, i.e., ’XXXXF2’.
Filler is two spaces.
Mapvers is ’B’.

Note that scaling relocates the start of each field. Users of scaling should not use fields that wrap off of the
right side of the screen and back on to the left.

Program Concepts

The application program must provide an MRCB in the working storage area of the application program.
The MRCB contains the name of the map.

The program can optionally provide the FCT, if it is necessary to dynamically modify the display
characteristics of specific fields or to receive more detailed information about input fields.

Since one map defines both the output and input handling, a typical application program performs a
write-mapped call followed by a read-mapped call using the same map and same MRCB.

When a mapped read or write call is executed, mapping determines the name of the map by concatenating
the MRCB map name field with the terminal device code. Mapping determines the location of the map
and loads the map into thread storage, if necessary.

The manner in which individual fields are processed is determined by information passed in the MRCB
and the optional buffer and FCT parameters. The MRCB is used to indicate that individual fields in the
map are to have their processing characteristics controlled by the application program. When this
indication is given, the CALL statement normally supplies the FCT parameters in which the overriding
characteristics of the desired fields are specified.

The WRITE-OPTION of the MRCB allows the application program to indicate which of the following
methods mapping should use:

Write all fields defined in the map, optionally overriding the display characteristics for those fields
entered in the FCT;

Write only those fields specified in the FCT, optionally overriding the display characteristics.

25

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

The READ-OPTION of the MRCB allows the application program to choose among the following:

Read all readable fields;

Read only those fields specified in the FCT.

Note that a mapped write with no FCT and no buffer can be used to write only the constant fields.

The MRCB, FCT, and CALL statement conventions are discussed in detail in the following sections.

MRCB

The MRCB is a working storage area defined within the application program. It contains the name of a
map, terminal control information, and mapping field control information. Note that an application
program may contain more than one MRCB, but only one MRCB is Required.

Users are provided MRCB copy code for COBOL, PL/I, and Assembler. The format of the MRCB, along
with a description of each of its fields, is found inMapping Request Control Block (MRCB).

In Assembler language, a map can be coded in line in the program and located immediately behind the
MRCB. The program can then be assembled with the map located directly in line with the program, thus
saving a load operation for the map. If this technique is to be used, the MAP-CONCAT fields in the
MRCB must be initialized to a C.

Another method for specifying that the application has the map in storage is to set the MAP-CONCAT
field in the MRCB to A and the MAP-ADDRESS field of the MRCB to the location of the map.

There is no logical restriction on how many maps a program can use. From a performance standpoint
however, if multiple maps are to be used, it may be desirable to make some or all of them resident in the
thread region of the application program. The MAP-COUNT field of the MRCB is used to request this
option. This value literally creates a queue of thread resident maps. The number of entries in the queue is
equal to the number specified in MAP-COUNT. If more maps are referenced than the queue can
accommodate, the queue of maps is treated as a "first-in-first-out" queue. A map-count of zero signifies
that the map should be used and then deleted.

Since the MRCB is used to pass control information back and forth between the application program and
Com-plete, some of the MRCB fields must be set by the application program and some by Com-plete.
Consequently, the MRCB is required for all mapping requests. The default value for all MRCB fields is
spaces, with the exception of the MAPNAME and VERSION fields.

FCT

The FCT is defined within the application program in the working storage section. Its function is to enable
the application program to change the display characteristics of individual fields and/or to receive more
detailed information about each field.

The FCT, if defined, must consist of one FCT entry per field to be individually processed. Each entry is
referred to as an FCTE.

If the FCT is not a parameter in the CALL statement, each field in the map is assumed eligible for writing,
and all unprotected fields in the map are eligible for reading.

26

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Each FCTE must be defined in one of three formats:

Short format of 6 bytes, or:

Long format of 10 bytes, or:

Extended format of 13 bytes.

Note that new applications must be coded using the extended format. The short and long forms have been
retained only for compatability with existing programs.

The short form contains only field names. The long form contains the field name, an input flag, and a
Field Descriptor Code (FDC) override field. The extended form also contains the override color and
override symbol set ID for 3279 graphics. The format used must be indicated in the MRCB.

The format for each type of FCTE is defined in Field Control Table (FCT).

Buffer Area

The buffer area(s), or record area, into which data is to be placed during a read operation and from which
data is to be obtained during a write operation must be defined within the application program.

When an application program uses an existing file record definition, the programmer can specify the data
offset during map creation. If an existing record format is not being used, use the UMAP edit copy code
function to create a buffer.

Output Field

WRTM is the mapping function used for writing information or data to the terminal. This function is
described in detail later in this chapter in the section entitled "WRTM".

Output processing involves global/field information from the map and dynamic overrides from the
application program. Terminal Control Codes (TCCs) are stored in the map when the map is created, and
they are overridden by specifying TCC-OVERRIDEs in the MRCB.

The TCC codes allow for the following sets of control:

E/N E: Erase unprotected fields prior to the write. N: Specifies that these fields will
not be erased. An application program can wish to rewrite only specific fields and
have the remaining unprotected fields erased or not.

A/Q A: Sound audible alarm at terminal. Q: Alarm is not sounded.

P/S P: Start printer. S: Printer is not started.

K/M K: Turn off the terminal’s modified data tags. The modified data tags indicate
that an unprotected field has been modified.

R/L R: Unlock the keyboard. L: Lock the keyboard.

TCC codes affect the erasure and reformatting of the constant fields. In the following discussion,
reference is made to options for which Com-plete determines whether an action is necessary. If these
options are selected (B and F), Com-plete determines if the same application program and map was used
for the previous write to the terminal and that no message switching, paging, terminal clear operation or
program fetch was done. This determination should be sufficient to keep the screen correctly displayed

27

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

with a minimum of rewriting of constant fields. Application programs that involve overlaying of mapped
screens may need to force no erase or force the formatting of constant fields.

B/W B specifies that Com-plete should determine whether the screen
requires erasing before the write. W specifies that the screen should
not be erased.

C/D/F F specifies that Com-plete should determine if constant fields need to
be rewritten. Specify D to force mapping to do no rewriting of the
constant fields, or C to always force writing of the constant fields.

With these functions in mind, the application programmer can use the WRTM function to write the
following information to the terminal:

Write only those fields defined as constants in the map.

This option can be forced by not passing the buffer area or the FCT when executing the WRTM
function.

Write all the fields defined in the map, (optionally) overriding the display characteristics for those
fields entered in the FCT.

This option can be forced by entering a space or an A in the WRITE-OPTION field of the MRCB,
passing the buffer area in the WRTM function, and (optionally) passing the FCT argument.

Write only those fields specified in the FCT, (optionally) overriding the display characteristics.

This option is forced by entering an O in the WRITE-OPTION field of the MRCB and passing both
the buffer area argument and the FCT argument.

Output validation is performed for data being written to the terminal to determine whether the program
data area field contains data that can be properly edited and moved to the map field entry. Specific output
validation performed is summarized below.

Alphanumeric and zoned decimal fields:

Transferred from the program data area without validation.

Packed and binary fields:

If the field contains invalid data, the program is terminated abnormally.

Leading zeros are suppressed.

If indicated in the map, a decimal point is edited into the display.

A "-" immediately precedes either the high order digit or the decimal point, if the field is negative.

For zero value fields, a single zero or the decimal point and all decimal places are displayed.

A numeric attribute is forced, unless the field is specified as skip or protected (FDCs of S or P).

28

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

If a value is too large to fit in the map display field, the display field is filled with asterisks.

Input Field Processing

READM is the mapping function used for processing input data from mapping requests. This function is
described in detail in this section.

Input fields are processed according to location (that is, row and column) on the screen; therefore, the map
used to read them should correspond exactly to the formatted screen. This can be easily accomplished by
using the same map to both read and write the screen.

Input validation is automatically performed for data being read from the terminal to determine whether the
input data can be properly edited and moved to the program field areas. The specific input validation
performed is summarized below.

Alphanumeric fields:

Validation is performed for length only.

If more data is entered than the program-defined field can accommodate, an overflow
exception condition will be posted.

If not enough data is entered to fill the field, the data will be left-justified and space-filled.

Zoned decimal fields:

Validation is for characters 0 - 9.

Data can contain leading and/or trailing blanks.

Data in the program data area will be right-justified and zero-filled.

Possible exceptional conditions posted are INVALID DATA and OVERFLOW.

Packed fields:

Input can have leading and/or trailing blanks.

If negative, the first digit or the decimal point must be preceded by a "-".

Decimal point placement is indicated by a period.

Data must be numeric, except as indicated above. Data is aligned, converted, and stored in
the program data field area.

Possible input exceptions posted are INVALID DATA, OVERFLOW, and UNDERFLOW.

Binary fullword fields:

Negative numbers are stored in two’s complement form.

Input can have leading and/or trailing blanks.

29

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

If negative, the first digit or the decimal point must be preceded by a "-".

Decimal point placement is indicated by a period.

Data must be numeric, except as indicated above. Data is aligned, converted, and stored in
the program data area.

Possible input exceptions posted are INVALID DATA, OVERFLOW, and UNDERFLOW.

Binary halfword fields:

Negative numbers are stored in two’s complement form.

Input can have leading or trailing blanks.

If negative, the first digit or the decimal point must be preceded by a "-".

Decimal point placement is indicated by a period.

Data must be numeric, except as indicated above. Data is aligned, converted, and stored in
the program data area.

Possible input exceptions posted are INVALID DATA, OVERFLOW, and UNDERFLOW.

The MRCB can contain a variable length feedback area. If so, this area is used to indicate
input errors from the terminal. Data entered that conflicts with the field definition for the
mapping field in which it is entered is not returned in the buffer area. Instead, the name of
the mapping field, followed by an exception code, is listed in the feedback area. The
MRCB feedback area exception codes are defined in Mrcb Exception Codes.

To illustrate the use of exception codes in the MRCB feedback area, consider the following
example where the underscored data was entered at a terminal.

Gross Pay .01 SSN A00000000

If the field GPAY was defined as having less than three decimal places in the map, and if the
field SSN was defined as a numeric field, then the MRCB feedback area would contain:

GPAY UF,SSN NN,

Note that each field entered in error is placed in the MRCB feedback area. The format of each
entry in the feedback area is illustrated in the following figure. The number of fields in the
feedback area is indicated by the MRCB’s error-fields. Note also that the feedback area is not
initialized between reads.

FIELD-NAME OFFSET LEN Description

ERROR-FIELD 0 6 Name of the field in error

FILLER 6 1 Blanks

ERROR-CODE7 2
Error codes, as described in Mrcb Exception
Codes

30

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

In addition, three fields within the MRCB are updated. The MRCB’s CURSOR-IN field
contains the input field name cursor location. The FIELDS-READ and ERROR-FIELDS fields are used to
indicate the number of fields returned to the application and the number of errors detected.

If an error is detected while processing a read function, a return code is posted in the return code
field of the MRCB and in theretcodeargument. The data for the field or fields in error is
nottransferred to the program data area.

In addition to the input exceptions posted in the MRCB feedback area, an input indicator is
placed in each input flag field in the FCTE, if the long or extended format of the FCTE is being used
(unless the FCTE is specified as ignored or protected). The codes returned are listed inField
Control Table.

Map Creation Using Macros

Before creating a map, you should design a separate display layout of each map for each terminal device
type to be used. Currently, the only device types supported by mapping are 3277 models 1 and 2, 3278
models 1 through 5, and the graphics terminal or compatible devices. These device types are referred to as
formattable devices; other device types are non-formattable devices.

After the map layouts have been designed, the macro statements defining the appropriate maps can be
written. For example, consider the following display for which a map definition is desired:

NAME: fred schwartz
ADDRESS: 1208 sw street

The map definition used to generate this display is:

MPO1 MAPSTART F2
 MAPF ,’NAME:’
NAME MAPF (1,10),14
 MAPF (2,1),’ADDRESS:’
ADDR MAPF ,20
 MAPEND
 END

In the above sample map definition, note the entries accompanying the MAPSTART macro statement.
The entry MP01 is the name of the map and the entry F2 is a terminal device type designator.

After the map has been defined, it is ready to be assembled and link edited. The assembly of the map
should be performed using the ALGN option of the assembler or the results may be unpredictable.

MAPSTART Macro

The MAPSTART macro is used to identify (name) the map, specify the device class code of the
terminal(s) on which the map is to be used, and specify optional terminal control information.

The format of the MAPSTART macro is:

name MAPSTART [devcode]
 [,FDCDEF=]
 [,TCC=]
 [,COLDEF=]
 [,PSDEF=]
 [,TYPEDEF=]

31

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

All the arguments, except name, are Optional.
These arguments are:

name Required.Default: None.The name of the map. /The name must be exactly four
or six alphanumeric characters in length and must begin with an alphabetic
character.

devcode OptionalDefault: F2 The device class code of the terminal for which this map
is to be used.The devcode must be one of the following:

F1 for 3270 model 1 or compatible device (12 lines
x 40 columns).

F2 for 3270 model 2 or compatible device (24 lines
x 80 columns).

F3 for 3278 model 3 or compatible device (32 lines
x 80 columns).

F4 for 3278 model 4 or compatible device (43 lines
x 80 columns).

F5 for 3278 model 1 or compatible device (12 lines
x 80 columns).

F6 for 3278 model 5 or compatible - (27 lines x 132
columns).

FDCDEF Optional.Default: DTO; no extended attributes.The default to be used for the
Field Descriptor Code (FDC) argument of the MAPF macro as used in this
map definition.The available FDCs are listed in Field Descriptor Codes .

TCC Optional.
Default: BEKQRSW The Terminal Control Codes (TCCs) to be used when
performing write commands. See Terminal Control Codes for further details.
If any TCCs are specified, at least one of the following pairs of TCC codes
must also be specified: AQ, BW, DF, EN, KM, LR, or PS.

COLDEF Optional.
Default: No default color assigned.The default color for the COL argument of
the MAPF macros used in this map definition and the background color for
the entire screen are:
BL
RE
PI
GR
TU
YE
NE
or blank, which applies to 3279 graphics terminals only.

PSDEF The default program symbol set ID for the PS argument of the MAPF macros
used in this map definition.

32

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

TYPEDEF Optional.
Default: AThe default for the TYPE argument of the MAPF macros used in
this map definition:

A Alphanumeric

F Fullword

H Halfword

P Packed

Z Zoned decimal

MAPF Macro

The MAPF macro is used to define each field to be displayed, including title fields and fields from the
application program.

The specification of row and column locations for display fields must allow for a one-character filler entry
that precedes each field in the display. For formattable devices, this field is reserved for the
hardware-controlled attribute byte. For non-formattable devices, a blank is inserted in this location. This
permits identical displays for both formattable and non-formattable devices.

The format of the MAPF macro is:

[name] MAPF [(row,column)]
 {,length1|,’constant’}
 [,length2]
 [,repeat]
 [,DECPLAC=]
 [,FDC=]
 [,COL=]
 [,PS=]
 [,OFFSET=]
 [,TYPE=]
 [,ITR=]

All the arguments are optional except length1 andconstant, between which a choice must be made. Note
that the absence of the (row,column) argument must be shown by a comma. Fields must be specified in
sequence, by column, within row, and can not overlap.

The arguments are:

name Optional. Default: The field will be unnamed.The name is used in the
FCT for field modification and feedback and in the MRCB feedback
area during input field exception processing.The name must begin with
a letter and cannot exceed six characters in length.

33

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

(row,column) Optional.
Absence of this argument must be specified by a comma.Default: The
field is concatenated to the previously-defined field. If this is the first
field defined, it is placed in location (1,1). The terminal display
location for this field. The first terminal display position is (1,1). If
(row,column) is omitted, the field immediately follows the previous
field in this display. Note that an apparent space exists because of the
attribute byte.

length1 Optional. Default: The length is derived from the length of constant, if
entered; otherwise, it must be specified, or an error is generated.The
display length for the field. For alphanumeric (type A) and zoned
decimal (type Z) fields, it also specifies the data area field length
within the application program using this map. This length does not
include the filler byte.

constant Optional. Default: If omitted, length1 must be specified.A character
string to be placed in the display field. The display length of the field
is determined by the number of characters entered in this argument.
The maximum number of characters allowed is 255. The FDC for this
field is forced to include S for format table devices.

length2 Optional.
Default: Must be specified with packed fields.The data field length, as
it exists in the application program for packed (type P) fields. The
length is specified in bytes. The field cannot exceed eight bytes in
length.

repeat Optional. Default: 1The number of times, plus 1, that the constant is to
appear in the terminal display in the same field. The length1 value for
the field is derived by multiplying the length of the constant by the
repeat factor.

DECPLAC Optional. Default: 0 The number of decimal places in this field. This
argument can only be specified if the TYPE is P, F, or H for this field.
This argument cannot be specified if the constant argument was
given.This argument is used to align the decimal point on input fields,
and for editing decimal points on output fields. The maximum value is
15.

FDC Optional. Default: DOTY The Field Descriptor Codes to be associated
with this field. More than one FDC can be given. In case of conflict,
the last one in the string takes precedence. If the constant argument
was given, either S or P is assumed and cannot be overridden;
however, any of the other allowable codes may be specified for the
class of device for which the map is being used.

COL The two-character color attribute to be associated with this field on a
3279 graphics terminal. The default is set from the COLDEF argument
of the MAPSTART macro. Values: BL//RE//PI//GR//TU//NE or blank

PS The one-character programmed symbol set ID to be associated with
this field on a 3279 graphics terminal. The default is set from the
PSDEF argument of the MAPSTART macro.

34

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

OFFSET Optional. Default: The data field in the program working storage area
is assumed to be concatenated to the last field specified with a positive
offset, whether or not the offset was implied or specified.The number
of bytes, either negative or positive, from the beginning of the buffer
I/O area to the location of this field within the application program.
The numerical value can range from -32768 to +32767. By adding this
value to the data area argument passed in the READM or WRTM call,
the location of the field in the program can be determined.

TYPE Optional. Default: "A" or the value specified in the TYPEDEF
argument of the MAPSTART macro.The type of field within the
program data area.This argument must not be specified if the constant
argument is given.

A Alphanumeric

F Binary fullword

H Binary halfword

P Packed

Z Zoned decimal

K Kanji

ITR Optional Default: OFFSpecifies whether input translation is to be
performed on this field. This argument can only be specified for
alphanumeric-type fields.

MAPEND Macro

The MAPEND macro allows for error detection, end-of-map processing, and the display of information
about the map. The MAPEND macro is required.

The format of the MAPEND macro is:

MAPEND

Advanced Facilities

Structured Fields

Structured fields are used to convey additional control functions and data to or from the display terminal.
Write Structured Fields (WSF) is the only 3270 command that can be used to send structured fields from
the application to the display. This command may be used only for devices that support extended data
stream. Devices that do not support WSF will reject this command with SENSE X’1003’.

Functions that can be accepted by display devices include partition/screen handling, outbound text or data
streams and partition read. The display uses and AID (X’88’) to indicate inbound structured field
functions.

35

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

WSF commands can be issued using theWRTSFandWRTSFCfunctions. The application program must
provide the complete command.WRTSFC followed by a device-dependent input function (READS)should
be used if the command specifies an application-initiated read (Read Partition or Read Buffer).

For Read Buffer the application program can use the special functionREADB instead of WRTSFC.
READB has no parameters and automatically sends the Read Buffer command.

For more information about WSF refer to the IBM 3270 Information Display System Data Stream
Programmer’s Reference (#GA23-0059-1), and the 3274 Control Unit Description and Programmer’s
Guide(#GA23-0061-2).

Periodic Redisplay

Output functions cause the application program to be ROLLed OUT. A time parameter (Default=0) can be
specified to tell Com-plete the elapsed time before the application program is put back in the ready-to-run
queue. This feature can be used in non-conversational output requests to refresh a screen at periodic
intervals either with updated data or a constant message. The TESTAT function (test for attention
interrupt) can immediately follow the timed output function to terminate the output loop. Refer to
theMiscelaneous Functions chapter in this documentation for a description ofTESTAT.

Note:
Application programs using this feature should not run on devices that do not support attention interrupts
such as CICS Transaction Routing or LU6.2 sessions since there will be no way to interrupt the loop.

Time-out

For conversational output functions the application program is put in the ready-to-run queue only after the
reply from the partner or device is received. If the time parameter is specified the application program, as
in non-conversational functions, is put in the ready-to-run queue after the specified time is elapsed. If the
application issues a subsequent input function before Com-plete received the reply no data will be
returned to the application program, thus identifying a time-out. The application program can then take the
necessary actions (backout, terminate, etc.). This feature is helpful to avoid program hangs on LU6.2
sessions or pseudo-terminals when the partner application fails to respond.

LU6.2 Transaction Programs
Com-plete handles LU6.2 Server Transaction Programs (TP) as normal online programs. From the user’s
point of view they just communicate with the partner transaction program instead of a terminal.

To start a server TP in Com-plete the partner (client) TP must specify the program name (up to 8
characters) in the ALLOCATE verb. Com-plete receives this TPname together with the logon information
in the ATTACH FMH-5. The user is then logged on and the TP started (as if *TPname was entered at a
display terminal). If the security information is incorrect, an error will be returned to the partner TP.

Server Tps always start in RECEIVE State and must issue a READ function. The 1st READ will return
the program name followed by the first Logical Record (Basic Conversation) or Mapped Conversation
Record.

Unlike display devices that send 1 screen at a time, LU6.2 TPs may send chains containing more than 1
logical record/mapped conversation record but only one record can be received for each input request.
Since input requests may be issued only after conversational output (except for the first input and when

36

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

reread is used) the TP must issue a conversational output request without data so a subsequent input
request can receive the next record. Note that this feature is valid only for LU6.2 sessions.

When in SEND State, several records can be sent in 1 chain by using non-conversational output functions
(Write Return). Write Conversational causes a CD (Change Direction) to be sent to the partner and the
conversation state is changed to RECEIVE.

Write Done terminates the conversation (implicit DEALLOCATE).

Restrictions

Com-plete V5.1 Communication Functions currently provide limited LU6.2 support since the API -
originally designed for terminal I/O - does not provide some parameters and functions required for full
LU6.2 support. An extension to the API is planned for future releases.

LU6.2 verbs like ALLOCATE, CONFIRM, CONFIRMD and parameters like Conversation ID
(CONVID), Partner LU Name, MODENAME, Conversation Type currently cannot be explicitly specified
or received due to API restrictions what leads to some programming limitations:

LU6.2 Transaction programs can currently run only as SERVER programs. All needed parameters
are provided by the client in the ALLOCATE verb.

Currently there is no way to pass control information - conversation parameters (modename,
synclevel, session type), conversation states, what_received - to the TP. The programmer must know
almost the exact data flow when designing the application to comply to the LU6.2 protocol. For
example, the programmer must know exactly how many records will be contained in each chain and
when a CD is expected so the TP can send data to the partner. If the conversation is in RECEIVE
state Com-plete will ignore any data specified in the conversational output until all records of the
current chain were received.

Conversational output, when in SEND state, cause Com-plete to send data + CD to the partner, thus
entering RECEIVE state. This must currently be (mis) used to force Com-plete to receive the next
record of a chain when in RECEIVE state. Any data specified in these dummy requests is ignored.
The application program cannot force SEND State (SEND ERROR) when in RECEIVE state.

A TP may handle only 1 Conversation

Syntax

Device-Independent Input: READ
READ[R] (retcode,area,length[,numleft|,numread[,dlist]])

Device-Dependent Input: READS
READS[R] (retcode,area,length[,numleft|,numread[,dlist]])

Parameters:

37

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

R OptionalReread Option.

retcode Required.A fullword where Com-plete places the return code on completion of
the operation.

area Required.
The buffer area in the working storage area of the application program where
Com-plete places the data to be transferred from Com-plete’s buffer.

length Required.A binary halfword containing the number of characters to be
transferred from Com-plete’s buffer. length must be greater than zero.

numleft Optional.A binary halfword where Com-plete places the number of characters
remaining to be transferred before the READ without reread option was issued.

numread Optional.A binary halfword where Com-plete places the number of data
characters actually transferred from Com-plete’s buffer to the application
program buffer when a READ with reread option is specified.

dlist Optional.
Not applicable if the reread otion is used.The working storage area of the
application program which contains the delimiter list to be used with the READ
request. This area must have been previously defined and initialized by the
application program.

Return Codes

Application programs should check the return code for one of the following values:

0 The amount of data transferred to the application program is equal to the
amount of data in Com-plete’s buffer.

4 The amount of data transferred to the application program is less than the
amount of data in Com-plete’s buffer.

8 The amount of data requested for transfer to the application is larger than the
amount of data in Com-plete’s buffer. Existing data is transferred, but extra
buffer space is not modified.

Abends

An abnormal termination can occur during execution of the READ function. Possible causes include:

An invalid argument was specified;

The input area is not in the user area;

The length specified is negative.

Input Using Map: READM
READM[R] (retcode,mrcb,darea [,fct])

38

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Parameters:

R Optional.Reread Option.

retcode Required.A fullword where Com-plete places the return code upon completion of
the operation.

mrcb RequiredThe name of the MRCB as defined in the application program. The
MRCB must be defined on a fullword boundary.

darea Required.The name of the buffer data area in the application program where the
input fields are to be placed.

fct OptionalDefault: None. The name of the FCT in the application program that will
be used according to the MRCB READ-OPTION field and the MRCB
FCTE-FORMAT field and MRCB-FCTE count.

Return Codes

The return code, placed both in the first argument and in the RETURN-CODE field of the MRCB should
always be examined for one of the following values:

0 No input errors were encountered and all required fields were read.

4 At least one error was encountered in the input. The MRCB ERROR-COUNT
field contains the number of fields in error and the number of field names with
exception codes in the feedback area.

8 There is at least one field in error and no feedback area was specified, or if a
feedback area was specified, it is full.

12 The location of a field in the input does not match a field location specified in
the map.

Data can be altered in the application program buffer area regardless of the return code value received.

Abends

An abnormal termination may occur during execution of the READM function. Some possible causes are:

An invalid MRCB was found;

An invalid area argument was specified;

An invalid FCT argument was specified;

The MRCB was not on a fullword boundary.

Device-Independent Output: WRT
WRT[T]{C|D|R} (retcode, area,length[,linelen[,time]])

WRTTx specifies a device-independent output function withText option. All data written to the terminal is
separated into logical words that cannot be partially contained in one line. If the word does not fit
completely on the line it is displayed on the next line.

39

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

Device-Dependent Output: WRTS
WRTS[E]{C|D|R} (retcode,area,length[,linelen[,time]])

WRTSEx specifies a device-dependent output operation with prior erasure of thet a 3270-screen.

Special Output

WRTSF - Write Structured Fields

WRTSF{C|D|R} (retcode,area,length[,time[,plist]])

READB - Write "Read Buffer"

READB

Parameters:

C/D/R Required.Specifies the processing logic for the request. Refer to section
Programming Considerations for more details.

retcode Required.A fullword where Com-plete places the return code upon completion of
the operation.

area Required.A buffer area in the application program containing the data to be
written to the terminal.

length Required.A binary halfword containing the number of characters of data to be
written.

linelen Optional.A binary halfword containing the value of the logical line length to be
used for the terminal. The linelen argument cannot be specified for
terminal-dependent write requests. Default: If linelen is not specified, or if a
linelen of zero is specified, the physical line length of the terminal is used.

time Optional.A binary halfword containing the number of seconds after which the
application program is placed at the bottom of the Com-plete ready-to-run queue
to await dispatching. When used with the "return" form of the WRT request,
control is returned to the application after the specified length of time has
elapsed.When used with the "conversational" form of the WRT request, control is
returned to the application when an interrupt occurs at the keyboard, or after the
specified length of time has elapsed. The time-out can be identified by the fact
that a "read" request returns no data.Default: None. The application program is
placed immediately in the ready-to-run queue.

Return Codes

The application program must examine the first parameter after completion of the request for one of the
following return code values:

40

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

0 The write operation was successful.

4 The write operation was terminated by the terminal user, either by pressing the
<CLEAR> key (or its equivalent), or by entering the character string *EOJ. The
application program can optionally choose to ignore this circumstance and
continue normal execution.

8 The terminal operator has terminated the write operation by entering the character
string *CANCEL, or the stack level has been terminated. If a terminal I/O with an
option other than DONE is issued after a return code 8 is received, the application
program is abnormally terminated

Â This value is normally reserved to enable the application program to perform
logical end-of-job processing.

12 A terminal I/O error has occurred. When return code 12 is received, the
application program is abnormally terminated, if another terminal I/O function that
does not specify the DONE option is executed.

16 The output created by execution of the WRT function was destroyed at the
terminal. Normally, this condition occurs if, while viewing the output, a message
was sent to the terminal that destroyed the formatted output, or if the terminal user
temporarily suspended this program in order to retrieve another. The application
program should reissue the WRT request to force a rewrite of the entire screen.
Mapping automatically handles this condition.

Abends

During execution of the WRT function, an abnormal termination may occur. Some possible causes are:

Too many output lines were requested to be written.

The area or length arguments were invalid.

The terminal operator entered a reply of *CANCEL and the application program executed another
WRT request other than WRTxD.

Output Using Map: WRTM
WRTM{C|D|R} (retcode,mrcb [,darea] [,fct])

Parameters

41

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

C/D/R Required.
Specifies the processing logic for the request. Refer to section Programming
Considerations for more details.

retcode Required.A fullword where Com-plete places the return code upon completion of
the operation.

mrcb Required.The name of the MRCB as defined in the application program. The
MRCB must be defined on a fullword boundary.

darea Required if the FCT parameter is specified. The name of the buffer data area in
the application program where the output fields are obtained during WRTM
processing.Default: If omitted, the format and fields from the map are written.

fct Optional.The name of the FCT in the application program that is used according
to the MRCB WRITE-OPTION field and the MRCB FCTE-FORMAT field. This
argument need not be specified if all the fields specified in the map are to be
written without modifying their display characteristics.

Return Codes

Return codes are placed both in the first parameter and in the MRCB RETURN-CODE field. Possible
return codes and their meanings are:

0 Normal return.

4 The operator entered *EOJ or pressed the <CLEAR> key.

8 The operator entered *CANCEL in the first field, or the stack level has been
terminated.

12 A terminal hardware error was detected during the WRTM operation.

16 The screen format has been erased. The screen format can be erased by the
terminal that has received a priority message, or destroyed by a user who has
suspended the application.

For formattable devices, it is assumed that the format is destroyed, if a return code other than zero is
passed to the application program. In this situation, the format is automatically rewritten when the next
WRTM request is executed, unless the WRITE-OPTION field of the MRCB specifies the letter O (only).

Abends

An abnormal termination may occur during execution of the WRTM function. Possible causes include:

An invalid MRCB entry was given;

An invalid area argument was specified;

An invalid FCT argument was specified;

The MRCB was not on a fullword boundary.

42

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Extended Graphics Support
Extended 3279 graphics terminals have capabilities not supported by other 3270 models. Mapping support
for these devices is implemented so that:

Maps created for the non-extended will function on the extended models;

The extended attributes will be ignored for non-extended models;

Extended capabilities are defined on the basis of global and field definitions (no subfielding
capabilities).

The extentions include color attributes, customized symbol sets, and extended highlighting.

These features are available with UMAP’s TCC UPDATE function on the global level, and with UMAP’s
ATTRIBUTE UPDATE function on the field level. For example, you can specify the color of the screen
as pink, as well as a different color for each field. As before, these attributes can be overridden by use of
the FCT.

Symbol Sets

Extended graphics terminals can be loaded with multiple user-defined symbol sets, which define the shape
and color of any screen symbol. For further information on the creation of symbol sets, see the IBM
User’s Guide for the Graphical Data Display Manager.

The symbol sets are stored in either VSAM files or STEPLIB libraries as modules with eight-character
names. Rather than specifying an eight-character name, mapping support refers to these symbol sets by a
one-character symbol set ID. Applications must have the device loaded with the correct symbol set and
symbol set ID.

Loading Symbol Sets

Symbol set modules can be loaded under application program control by using Com-plete’s COLINK
function and the Com-plete subroutine U2MASS. For the purposes of testing, the UMAP "LOAD
PROGRAMMED SYMBOLS" function can be used to load symbol sets with an associated symbol set ID,
and UMAP will call U2MASS.

Format

The format for using the COLINK function is:

COLINK (retcode,subroutine-name,entry1)

43

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

retcode Required.A fullword where Com-plete places the return code upon
completion of the operation.

sub-routine-nameAn eight-character field with value "U2MASS".

entry1 An eleven-byte structure for each symbol set, to be:

Offset Length Contents

0 8 symbol set module name

8 1 symbol set ID

9 1 storage plane requested

10 1 storage plane assigned

where:

symbol set name
Specifies the name of the GDDM-generated symbol set name module.

symbol set ID
Is a one-character ID by which mapping refers to the symbol set.

storage plane
Is a one-character storage plane name, requested as defined in 3270
component description, to be used by the module.

storage plane
Is assigned by U2MASS. used

Examples

Example 1 - Terminal-Independent I/O

This sample program demonstrates the use of terminal independent READ (also with reread option) and
WRT using C, D and R options and also the time parameter. See the program comments for usage details.

COPY CCGLOBS
*
* REGISTERS ON ENTRY:
* R2 = A(COMREG)
* RD = A(CALLER’S SAVE AREA)
* RE = RETURN ADDRESS
* RF = ENTRY POINT
*
SAMP1 CSECT
 USING SAMP1,RC
 STM RE,RC,12(RD)
 LR RC,RF LOAD ENTRY POINT
 ST RD,SAVE+4
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR RD,R1
 LA R0,IPTAREA
 MVC OUTAREA,BLANKS

44

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

 MVC PROGNAME,BLANKS
 LA R6,WSTABLE
 LA R5,LASTENT
*
* GET TOTAL LENGTH ENTERED
*
 CM$CALL READR,(RETCODE,IPTAREA,WRLEN,NUMREAD)
 LH R1,NUMREAD
 CVD R1,DWRD
 UNPK TLEN(2),DWRD+6(2)
 OI TLEN+1,X’F0’
*
* SKIP PROGRAM NAME
* *SAMP1 = 6 CHARACTERS + 1 BLANK = 7
*
 CM$CALL READ,(RETCODE,PROGNAME,PRGLEN)
 CLI RETCODE+3,4 AMOUNT OF DATA TRANSFERED IS...
 BH CANCEL LESS THAN REQUESTED. ERROR
 BL DISPLY = REQUESTED ==> PROGNAME ONLY
*
* THE TEST BELOW CAN BE USED INSTEAD OF THE PRECEDING:
*
* CLI NUMREAD+1,7 LENGTH ENTERED > 7?
* BL DISPLY NO - ONLY PROGNAME
*
* READ STARTUP DATA
*
CM$CALL READ,(RETCODE,IPTAREA,WRLEN,NUMLEFT)
 LA R1,20
 CLI NUMLEFT+1,20 RETCODE COULD BE TESTED INSTEAD
 BH MOVE00
 LH R1,NUMLEFT ACTUAL LENGTH TRANSFERED
MOVE00 DS 0H
 BCTR R1,0 FOR EX
 EX R1,MOVE1
 EX R1,MOVE2 MOVE 1ST TABLE ENTRY
 LA R6,20(,R6) INCREMENT POINTER
*
* DISPLAY STARTUP DATA
*
DISPLY DS 0H
 LA R1,L0
 STH R1,WRLEN
 CM$CALL WRTC,(RETCODE,AREA0,WRLEN)
 ICM RF,15,RETCODE
 BNZ END NO, TERMINATE PROGRAM
*
WHOISIT DS 0H
 MVC IPTAREA,BLANKS CLEAR INPUT AREA
 CM$CALL READ,(RETCODE,IPTAREA,RDLEN,NUMLEFT)
 ICM RF,3,NUMLEFT ANY DATA?
 BZ END NO
 CLC IPTAREA(6),RECALL ARE WE RECALLING TABLE ENTRY?
 BE WHICHONE YES, BRANCH
 MVC 0(20,R6),IPTAREA MOVE INPUT TO TABLE
 LA R6,20(,R6) INCREMENT POINTER
WENTER DS 0H
 LA R1,L1
 STH R1,WRLEN
*
* WAIT FOR "TIME" SECONDS FOR OPERATOR REPLY
*

45

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

 CM$CALL WRTC,(RETCODE,AREA1,WRLEN,,TIME)
 ICM RF,15,RETCODE IF TIMEOUT TERMINATE
 BNZ END NO, TERMINATE PROGRAM
 CR R6,R5 END REACHED?
 BNH WHOISIT NO
 LA R6,WSTABLE RESTART FROM BEGIN
 B WHOISIT READ NEXT
WHICHONE DS 0H
 LA R8,WSTABLE POINT TABLE START
 OC IPTAREA+7(2),X2F0 BE SURE IT IS NUMERIC
 PACK WRKCOUNT,IPTAREA+7(2)
 ZAP TBLCOUNT,INCRP
 LA R1,9 LOOP COUNT
COMPARE CP WRKCOUNT,TBLCOUNT
 BE FOUND
 AP TBLCOUNT,INCRP
 LA R8,20(,R8)
 BCT R1,COMPARE TRY AGAIN
*
FOUND MVC NAME,0(R8)
 LA R1,L2
 STH R1,WRLEN
*
* DISPLAY RECALLED ENTRY FOR "TIME " SECONDS.
* NOTE THAT KEYBOARD REMAINS LOCKED
*
 CM$CALL WRTR,(RETCODE,AREA2,WRLEN,,TIME)
 ICM RF,15,RETCODE
 BE WENTER
*
END DS 0H
 LA R1,L3
 STH R1,WRLEN
*
* DISPLAY LAST MESSAGE AND TERMINATE THE PROGRAM
*
 CM$CALL WRTD,(RETCODE,AREA3,WRLEN)
*
CANCEL DS 0H
 MCALL ABEND,ABCODE=0001
*
*--
* WORK
*--
MOVE1 MVC OUTAREA(0),IPTAREA
MOVE2 MVC 0(0,R6),IPTAREA
DWRD DS D
SAVE DS 18F
RETCODE DS F
IPTAREA DS CL80
NUMLEFT DS H
NUMREAD DS H
X2F0 DC X’F0F0’
WRLEN DC H’80’
RDLEN DC H’20’
PRGLEN DC H’6’
INCRP DC PL2’1’
TBLCOUNT DC PL2’0’
WRKCOUNT DC PL2’0’
TIME DC H’10’
BLANKS DC CL20’ ’

46

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

RECALL DC CL6’RECALL’
AREA0 DS 0CL80
 DC C’PROGRAM NAME= ’
PROGNAME DS CL7
 DC X’15’
 DC C’TOTAL LENGTH ENTERED= ’
TLEN DS CL2
 DC X’15’
 DC C’INITIAL DATA= ’
OUTAREA DS CL20
AREA1 DS 0CL73
 DC X’15’
 DC X’15’
 DC C’ENTER A 20 CHARACTER STRING OR ’’RECALL’’’
 DC X’15’
DC C’AND A 2 POSITION NUMBER FROM 1 - 10’
L0 EQU *-AREA0
AREA2 DS 0CL80
 DC X’15’
 DC X’15’
NAME DS CL20
 DC 58C’ ’
L1 EQU *-AREA1
L2 EQU *-AREA2
AREA3 DC C’PROGRAM TERMINATED NORMALLY’
L3 EQU *-AREA3
 DS 0F
WSTABLE DC 9CL20’ ’
LASTENT DS CL20’ ’
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

Example 2 - Terminal-Independent I/O using delimiter list

This sample program does basically the same as the previous one, except that more than 1 table entry can
be entered at each prompt, separated by commas.

COPY CCGLOBS

*
* REGISTERS ON ENTRY:
* R2 = A(COMREG)
* RD = A(CALLER’S SAVE AREA)
* RE = RETURN ADDRESS
* RF = ENTRY POINT
*
SAMP2 CSECT
 USING SAMP2,RC
 STM RE,RC,12(RD)
 LR RC,RF LOAD ENTRY POINT
 ST RD,SAVE+4
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR RD,R1
 LA R0,IPTAREA
 LA R6,WSTABLE
 LA R5,LASTENT

47

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

*
* WRITE INITIAL MESSAGE
*
DISPLY DS 0H
 LA R1,L1
 STH R1,WRLEN
 CM$CALL WRTC,(RETCODE,AREA1,WRLEN)
 ICM RF,15,RETCODE
 BNZ END NO, TERMINATE PROGRAM
*
AGAIN DS 0H
 MVC IPTAREA,BLANKS CLEAR INPUT AREA
 CM$CALL READ,(RETCODE,IPTAREA,RDLEN,,DLMLIST)
 CLC IPTAREA(6),RECALL ARE WE RECALLING TABLE ENTRY?
 BE WHICHONE YES, BRANCH
 ICM RF,3,DNUMRET ANYTHING READ?
 BZ DISPLY NO, END OF LIST
 MVC 0(20,R6),IPTAREA MOVE INPUT TO TABLE
 LA R6,20(,R6) INCREMENT POINTER
 CR R6,R5 END REACHED?
 BNH AGAIN NO
 LA R6,WSTABLE RESTART FROM BEGIN
 B AGAIN
*
WHICHONE DS 0H
 LA R8,WSTABLE POINT TABLE START
 OC IPTAREA+7(2),X2F0 BE SURE IT IS NUMERIC
 PACK WRKCOUNT,IPTAREA+7(2)
 ZAP TBLCOUNT,INCRP
 LA R1,9 LOOP COUNT
COMPARE CP WRKCOUNT,TBLCOUNT
 BE FOUND
 AP TBLCOUNT,INCRP
 LA R8,20(,R8)
 BCT R1,COMPARE TRY AGAIN
*
FOUND MVC NAME,0(R8)
 LA R1,L2
 STH R1,WRLEN
 CM$CALL WRTC,(RETCODE,AREA2,WRLEN)
 ICM RF,15,RETCODE
 BZ DISPLY
*
END DS 0H
 LA R1,L3
 STH R1,WRLEN
*
* DISPLAY FINAL MESSAGE AND TERMINATE THE PROGRAM
*
 CM$CALL WRTD,(RETCODE,AREA3,WRLEN)
*
CANCEL DS 0H
 MCALL ABEND,ABCODE=0001
*
*--
* WORK
*--
SAVE DS 18F
RETCODE DS F
IPTAREA DS CL160
NUMLEFT DS H
X2F0 DC X’F0F0’

48

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

WRLEN DC H’80’
RDLEN DC H’20’
PRGLEN DC H’6’
INCRP DC PL2’1’
TBLCOUNT DC PL2’0’
WRKCOUNT DC PL2’0’
TIME DC H’10’
BLANKS DC CL160’ ’
RECALL DC CL6’RECALL’
AREA1 DS 0CL73
 DC X’15’
 DC X’15’
 DC C’ENTER ONE OR MORE TABLE ENTRIES UP TO 20 CHARS LONG ’
 DC C’SEPARATED BY COMMAS OR’
 DC X’15’
 DC C’’’RECALL’’ AND A 2 POSITION NUMBER FROM 1 TO 10’

AREA2 DS 0CL80
 DC X’15’
 DC X’15’
NAME DS CL20
 DC 58C’ ’
L1 EQU *-AREA1
L2 EQU *-AREA2
AREA3 DC C’PROGRAM TERMINATED NORMALLY’
L3 EQU *-AREA3
 DS 0F
WSTABLE DC 9CL20’ ’
LASTENT DS CL20’ ’
*
DLMLIST DS 0F
DLMQUAN DC H’1’
DNUMRET DC H’0’
DLMNUM DC H’0’
DLIMITR DC C’,’
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

Example 3 - Terminal-Dependent Output

This sample coding illustrates the use of a terminal-dependent output with erase option (WRTSEC). Note
that Buffer addresses must be specified as binary values relative to zero (upper left corner).

SCREEN START
 ...
 ...
 ...
WRTRTN DS 0H
 CM$CALL WRTSEC,(RETCODE,SCREEN,IOLEN)
 OC RETCODE,RETCODE
 BNZ ERROR
 ...
 ...
ERROR DS 0H
 ...
 ...
SCREEN DS 0D
 DC X’C3’ WCC

49

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

 DC X’11’ Set Buffer Address
 DC AL2(0) Relatibe Buffer Address
 DC X’13’ INSERT CURSOR
 DC C’LINE 1’ DATA: LINE 1
 DC X’11’ SBA
 DC AL2(80) RBA
 DC C’LINE 2’ DATA: LINE2
IOLEN DC H’20’
 ...
 ...
 END

Example 4 - Terminal I/O using Map

This example shows the use of macros to create a map for a defined screen layout and it’s usage in
terminal I/O functions.

Screen Layout

 Name:name field.....
 Addr:address field.......
 City:city field........
 SSN: 999999999 EMP.NR.: 9999.99
 Gross Pay: 9999999

 Enter Desired Action: ..action..

Map definition

Below is an example showing how to define the map using macros. For ease of use, however, it is
recommended to create maps using the UMAP Utility.

MAP1F2 START
MAP1F2 MAPSTART F2,TCC=KREBF,FDCDEF=R alphanum., reqd
*
* The field below is non-modifiable and outside the data area
*
ERRDIS MAPF (1,2),30,OFFSET=-40,FDC=S
 MAPF (2,2),’Name:’,FDC=SDKY CONSTANT
NAME MAPF ,20,OFFSET=0,A,FDC=UDKOY ALPHANUMERIC
 MAPF (3,2),’Addr:’,FDC=SDKY
ADDR MAPF ,24,OFFSET=20,A,FDC=UDKOY
 MAPF (4,2),’City:’,FDC=SDKY
CITY MAPF ,24,OFFSET=44,A,FDC=UDKOY
TSSN MAPF (5,2),’SSN:’,FDC=SDKY
SSN MAPF ,9,OFFSET=68,TYPE=Z,FDC=UDKOY ZONED DECIMAL
 MAPF (5,25),’Emp.Nr.:’,FDC=SDKY
EMPN MAPF (05,034),8,OFFSET=77,TYPE=F,FDC=UDKOY BINARY FULLWORD
 MAPF (6,2),’Gross Pay:’,FDC=SDKY
GPAY MAPF ,7,4,OFFSET=85,TYPE=P,FDC=UDKOY,DECPLAC=2 PACKED 7,2
TENT MAPF (9,2),’Enter Desired Action:’,FDC=SDKY
*
REQ MAPF ,10,OFFSET=-40,A,FDC=UDKOY
 MAPEND
 END MAP1F2

Note:
The display characteristics of the constant fields labeled "TSSN" and "TENT" can be modified in the
program since a name is specified.

50

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Sample Program

SAMP4 CSECT
 USING SAMP4,RC
 ...
 ...
 MVC MRCBNAM,=CL4’MAP1’ MAP MAP1XX
 MVI MRCBVERS,C’B’ VERSION
 MVI MRCBFCTF,C’L’ LONG FCT FORMAT
 MVC MRCBFBAL,=H’30’ LENGTH OF FEEDBACK IS 30
 ...
INIT DS 0H INITIALIZE DATA BUFFER
 MVI ERROR,C’ ’
 MVC ERROR+1(L’ERROR-1),ERROR
 MVC NAME,ERROR
 MVC ADDR,ERROR
 MVC CITY,ERROR
 MVC REQUEST,ERROR
 MVC SSN,=CL9’000000000’
 MVC GPAY,=PL4’0’
 MVC EMPNUM,=F’0’
 ...
 ...
PROMPT DS 0H RESET OPTIONS
 MVI MRCBWOPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 MVI MRCBROPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 CM$CALL WRTMC,(RETCODE,MRCB,DATABUFF)
 L RF,RETCODE
 CH RF,=H’16’ WAS SCREEN DESTROYED BY MSG?
 BE PROMPT THEN REWRITE THE SCREEN
 LTR RF,RF
 BNZ EOJ
 CM$CALL READM,(RETCODE,MRCB,DATABUFF)
 L RF,RETCODE
 LTR RF,RF OK?
 BZ GETCOMM YES, GET COMMAND
 MVC ERROR,MRCBFEED SHOW ERROR
 B PROMPT AND REWRITE SCREEN
*
GETCOMM DS 0H GET COMMAND FROM OPERATOR
 XC ERROR,ERROR CLEAR MESSAGE
 LA R0,COMFCTES NUMBER OF FCTE’S
 STH 0,MRCBFCTC SET COUNT
 MVI MRCBWOPT,C’O’ LETTER O, SAYS O-NLY
 MVI MRCBROPT,C’O’
 CM$CALL WRTMC,(RETCODE,MRCB,DATABUFF,COMMAND)
 L RF,RETCODE
 CH RF,=H’16’ WAS SCREEN DESTROYED BY MSG?
 BE GETCOMM THEN REWRITE THE SCREEN
 LTR RF,RF
 BNZ EOJ
 CM$CALL READM,(RETCODE,MRCB,DATABUFF,FCT=COMMAND)
 L RF,RETCODE
 LTR RF,RF OK?
 BZ PROCESS YES, PROCESS COMMAND
 MVC ERROR,MRCBFEED SHOW ERROR
 B GETCOMM AND REWRITE SCREEN
*
PROCESS DS 0H
 ...
 ...
 MVC ERROR,=CL30’RECORD SUCCESSFULLY UPDATED’

51

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

 ...
 ...
MESSAGE DS 0H DISPLAY MESSAGE
 MVI MRCBWOPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 MVI MRCBROPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 MVC MRCBCOUT,=CL6’ ’ BLANK CURSOR OUT FIELD
 LA R0,SHOFCTES NUMBER OF FCTE’S
 STH R0,MRCBFCTC SET COUNT
 CM$CALL WRTMC,(RETCODE,MRCB,DATABUFF,SHOONLY)
 L RF,RETCODE
 CH RF,=H’16’ WAS SCREEN DESTROYED BY MSG?
 BE MESSAGE THEN REWRITE THE SCREEN
 LTR RF,RF
 BNZ EOJ
 B INIT
*
 ...
 ...
EOJ DS 0H
 CM$CALL EOJ
*
*--
* WORK AREA
*--
 ...
 COPY CCMRCB FROM SOURCE LIB
COMMAND DS 0F
* NNNNNN FIELD NAME
* T TAG
* FDC OVERRIDING FDC
 DC CL10’ENTER D ’ CONSTANT DISPLAY
 DC CL10’ACTION UD ’ DISPLAY, UNPROTECT
COMFCTES EQU *-COMMAND/10
*
SHOONLY DS 0F
 DC CL10’NAME P’ NAME PROTECT
 DC CL10’ADDR P’ ADDR PROTECT
 DC CL10’CITY P’ CITY PROTECT
 DC CL10’SSN P’ SSN PROTECT
 DC CL10’NUMBER P’ EMPLOYEE PROTECT
 DC CL10’GPAY P’ GROSS PAY PROTECT
 DC CL10’ENTER N’ ENTER NON-DISPLAY
 DC CL10’ACTION PD’ ACTION PROTECT, DISPLAY
SHOFCTES EQU *-SHOONLY/10
*
DATABUFF DS 0F WRTMC, READM DATA BUFFER
ERROR DC CL30’ ’
REQUEST DC CL6’ ’
DRECORD EQU * RECORD BUFFER
EMPNUM DC F’0’
NAME DC CL20’ ’
ADDR DC CL24’ ’
CITY DC CL24’ ’
SSN DC ZL9’000000000’
GPAY DC PL4’0’
 ...
 ...
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

52

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

Example 5 - LU6.2 TP

This example shows the use of I/O functions in LU6.2 sessions.

 COPY CCGLOBS
**
*
* SAMPLE PROGRAM FOR LU6.2 SESSION
*
**
*
* REGISTERS ON ENTRY:
* R2 = A(COMREG)
* RD = A(CALLER’S SAVE AREA)
* RE = RETURN ADDRESS
* RF = ENTRY POINT
*
**
SAMP5 CSECT
 USING SAMP5,RC
 CMNAME BRANCH=OS
 STM RE,RC,12(RD)
 LR RC,RF LOAD ENTRY POINT
 ST RD,SAVE+4
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR RD,R1
 MVC PROGNAME,BLANKS
*
* READ PROGRAM NAME
* *SAMP5 = 6 CHARACTERS + 1 BLANK = 7
*
 CM$CALL READ,(RETCODE,PROGNAME,PRGLEN)
 CLI RETCODE+3,4 AMOUNT OF DATA TRANSFERED IS...
 BNH READ1 LESS THAN REQUESTED. ERROR
 BAL R9,CANCEL
*
* READ 1ST RECORD
*
READ1 DS 0H
 CM$CALL READ,(RETCODE,RECORD1,RDLEN,NUMLEFT)
 OC RETCODE,RETCODE
 BZ READ2
 BAL R9,CANCEL
*
* READ 2ND RECORD FROM CHAIN
* WRTC WITH LENGTH 0 MUST PRECEDE EACH READ
*

READ2 DS 0H
 CM$CALL WRTC,(RETCODE,RECORD1,ZEROLEN)
 OC RETCODE,RETCODE
 CM$CALL READ,(RETCODE,RECORD2,RDLEN,NUMLEFT)
 OC RETCODE,RETCODE
 BZ READ3
 BAL R9,CANCEL
*
READ3 DS 0H

53

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

 CM$CALL WRTC,(RETCODE,RECORD2,ZEROLEN)
 OC RETCODE,RETCODE
 CM$CALL READ,(RETCODE,RECORD3,RDLEN,NUMLEFT)
 OC RETCODE,RETCODE
 BZ WRITE
 BAL R9,CANCEL
*
*
* NOW THE WHOLE CHAIN WAS READ AND WE ARE IN SEND STATE
*
WRITE DS 0H
 CM$CALL WRTR,(RETCODE,PROGNAME,PRGLEN)
 CM$CALL WRTR,(RETCODE,RECORD2,WRLEN)
 CM$CALL WRTR,(RETCODE,RECORD1,WRLEN)
 CM$CALL WRTD,(RETCODE,RECORD3,WRLEN)
*
CANCEL DS 0H
 MCALL ABEND,ABCODE=0001
*
*--
* WORK
*--
SAVE DS 18F
RETCODE DS F
PROGNAME DS CL7
RECORD1 DS CL25
RECORD2 DS CL25
RECORD3 DS CL25
BLANKS DC CL25’ ’
NUMLEFT DS H
NUMREAD DS H
ZEROLEN DC H’0’
WRLEN DC H’25’
RDLEN DC H’25’
PRGLEN DC H’7’
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

A matching Client TP that may execute anywhere in the network (must run outside Com-plete) should
contain an equivalent to the following LU6.2 verbs and options:

54

Com-plete 6.2.1 Application ProgrammingTerminal I/O Functions

VERB Options

ALLOCATE Remote Luname: Com-plete APPL

MODEname: installation-defined modename

TPname: SAMP5

SECURITY: valid Com-plete user ID and
password

CONVTYPE: MAPPED

SYNCLEVEL: NONE or CONFIRM

SEND AREA: 25 Byte message

LENGTH: 25

SEND same as above

SEND same as above

RECEIVE will retrieve "*SAMP5 ", length=7

RECEIVE will retrieve the 2nd message sent, length=25

RECEIVE will retrieve the 1st message sent, length=25

RECEIVE will retrieve the 3rd message sent, length=25 depending on the
implementation also CEB (DEALLOCATE)

RECEIVE will retrieve DEALLOCATE (if not retrieved in above verb)

DEALLOCATE TYPE=LOCAL (depends on implementation)

55

Terminal I/O FunctionsCom-plete 6.2.1 Application Programming

Terminal Paging
This chapter covers the following topics:

Overview

POPEN Function

PWRT Function

PREAD Function

PLIMIT Function

Overview
The Com-plete terminal paging functions enable an application program to create a temporary disk file
data set (referred to as a page file) and read or write data to the page file in blocks of data (referred to as
pages). The pages of data in the page file can be dynamically displayed at the terminal from which the
application program is executing without terminating the application program. The dynamic display of
pages is accomplished by use of the Com-plete online utility program UP.

The page file is allocated as a temporary SD file data set, and is available for use only until another
program is initiated from the same terminal. Each terminal can have only one page file per COM-PASS
stack level assigned to it at any time, and the page file assigned to one terminal cannot be accessed by an
application program executing from another terminal. Each page file can contain a maximum of 255
pages.

A terminal user must use the Com-plete paging utility UP to display the contents of a page file. The use of
the UP utility program is described in theIBM User’s Guide for the Graphical Data Display ManagerThe
UP functions used to display pages written to a page file are independent of the application program. The
application program is not active while you use the UP paging utility to display data because the
application program and the UP utility execute as separate subtasks of the operating system.

After using the UP utility functions to display the contents of a page file at the terminal, you can choose to
change the contents of the page being displayed. Since the paging functions do not perform terminal I/O,
the application program has to issue a terminal I/O READ function to obtain the information being
displayed. The data is then written to the page file with a terminal paging WRITE function in order to
force the change to the paging file.

The available paging functions are summarized in the following table. Each of these functions is described
separately in this chapter.

56

Com-plete 6.2.1 Application ProgrammingTerminal Paging

Function Description

POPEN Allocates the SD file space required for the page file in use.

PWRT Writes data to the page file.

PREAD Reads data from the page file and places it in a working storage area in
the application program.

PLIMIT Restricts, or limits, the pages that can be displayed at a given terminal,
based upon application-selected criteria.

POPEN Function
The POPEN function is used to allocate, or create, a page file. The page file created is assigned to the
terminal from which the application program issuing the POPEN function is called. Since the POPEN
function reserves an area for the page file, it must be the first paging function issued in the application
program.

The POPEN function arguments enable the application program to determine the size of the page file.
Page file size is determined by two items:

The number of pages to be reserved for the page file

The size of each page in the page file

Each item must be specified at the time the POPEN function is issued.

Format

The format for using the POPEN function is:

POPEN (retcode,length,numrec)

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

length Required.
A binary halfword containing the length of each page expressed
as a number of characters.

numrec Required.
A binary halfword containing the total number of pages in the
file. numrec can have a maximum value of 255.

Return Codes

A return code of 0 is issued upon normal completion of the POPEN function.

Abends

57

Terminal PagingCom-plete 6.2.1 Application Programming

An abnormal termination may occur during execution of the POPEN function. Possible causes
include:

An invalid length argument was specified;

An invalid numrec argument was specified;

Too large a page file was requested;

A disk error occurred during open processing;

Not enough space is available in the SD allocation pool to create the requested page file;

An incorrect number of arguments was specified.

PWRT Function
The PWRT function is used to write data to a page file that has been created with the POPEN function.
The data to be written to the page file resides in a working storage area of the application program and is
written on a page basis. The amount of data to be written cannot exceed the size of one page, but can be
smaller than one page. Pages can be written either sequentially or directly.

Several PWRT options are available to assist in the formatting of pages. These format options include:

Erase the screen for a display terminal prior to displaying the page contents.

Insert a new-line symbol (X’15’) into the page data to be displayed in order to format individual lines
of output.

Treat the data in the page to be displayed as text, displaying the data in such a manner that words will
not be split between lines.

Insert terminal-dependent control characters into the page data in order to format the page when
displayed. In this situation, the application program should be executed from only one device type,
since the control characters for one device type terminal may produce unpredictable results when
used with another kind of device type terminal.

Do not automatically erase a display terminal screen when the page is displayed. This option might
be used when a display type terminal is to be used and the application program is to create a page
that, when displayed, will contain an explanation of a series of variables. The first page might be a
list of all variables, and successive pages might then be used to explain each variable. Since the
screen is not erased, the successive pages can literally add information to the screen.

Note that the size of a page in a page file can be less than or larger than the size of an output display for a
specific terminal device type. If the terminal to be used is a display type terminal, then multiple pages can
be displayed at one time.

PWRT causes a page to be written to the page file. If the terminal in use is a display type terminal, the
screen is erased prior to a display operation when the page is requested for display.

PWRTT causes a page to be written to the page file. The data is treated as text and, when displayed at the
terminal, words sre not split between two lines. If the terminal in use is a display type terminal, the screen
is erased prior to a display operation when the page is requested for display.

58

Com-plete 6.2.1 Application ProgrammingTerminal Paging

PWRTS causes a page to be written to the page file. The data to be written to the page file must contain all
terminal device-dependent control characters. These characters are used to format the terminal display
when the terminal operator requests a display of the page. If the terminal in use is a display type terminal,
the screen is not erased prior to a display operation when the page is requested for display.

PWRTSE causes a page to be written to the page file. The data to be written to the page file must contain
all terminal device-dependent control characters. These characters are used to format the terminal display
when the terminal operator requests a display of the page. If the terminal in use is a display type terminal,
the screen will be erased prior to a display operation when the page is requested for display.

Format

The format for using the PWRT function is:

PWRT[T|S|SE] (retcode,area[,numrec][,length])

retcode Required.A fullword where Com-plete places the return code
upon completion of the operation.

area Required.The buffer in the application program’s working storage
area from which the data is to be written.

numrec Optional.
A binary halfword that contains the number of the page to be
written.Default: If not specified or zero, the page number is
assumed to be one higher than the previously-written page. If a
previous page has not been written, the page number is assumed
to be first (page number 1).

length Optional.
A binary halfword that contains the length in bytes of the page to
be written. The length must not be larger than the length of the
page specified in the POPEN statement for the page file.Default:
The page length specified in the POPEN statement for the page
file.

Return Codes

A return code of 0 is issued upon normal completion of the PWRT function.

Abends

An abnormal termination may occur during execution of the PWRT function. Possible causes
include:

An invalid argument was specified;

A function other than POPEN was specified, and POPEN was never specified;

An incorrect number of arguments was specified;

A disk error occurred while processing the page file.

59

Terminal PagingCom-plete 6.2.1 Application Programming

PREAD Function
The PREAD function is used to read data from a page file. Data being read is placed in a working storage
buffer area within the application program and is read on a page basis. The amount of data to be read
cannot exceed a page in size, but can be less than a page. In addition, pages can be read either sequentially
or at random.

After a page of data is read from the page file by the PREAD function, the application program can
display the data to the terminal by use of the Com-plete terminal I/O functions. If you want to modify the
contents of a displayed page, the application program must read the modified page from the terminal with
a terminal I/O READ function and then write the page to the page file using the PWRT function.

Format

The format for using the PREAD function is:

PREAD (retcode,area [,numrec][,length])

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

area Required.
The buffer area in the working storage area of the application
program where the page data is to be placed.

numrec Optional.
A binary halfword containing the number of the page to be
read.Default: Pages are read sequentially. If numrec is zero, the
page to be read is assumed to be one higher than the previous
page read. If a previous page has not been read, the first page is
read.

length Optional.
A binary halfword containing the amount of data to be read from
the page indicated. length must not be larger than the length
specified in the POPEN function for the page file.Default: The
page length specified with the POPEN function for the page file.

Return Codes

The following return codes are issued by the PREAD function.

0 Normal completion.

4 The page requested has not been written.

Abends

An abnormal termination may occur during execution of the PREAD function. Possible causes
include:

60

Com-plete 6.2.1 Application ProgrammingTerminal Paging

An invalid argument was specified;

The page file was not opened prior to issuing the PREAD function;

An incorrect number of arguments was specified;

A disk I/O error occurred while reading the page file.

PLIMIT Function
You normally display the pages of a page file using the Com-plete online utility program UP. This utility
program is fully described in theCom-plete Utilities documentation. If you display pages from the page
file, Com-plete keeps track of the following items:

The number of the current page being displayed;

The number of the highest page written to the page file by the application program.

For example, an application program has opened a page file with twenty pages using the POPEN function,
but has only written ten pages to the page file using the PWRT function. Before any pages are displayed at
the terminal, the current page and the highest page values within Com-plete will contain 1 and 10,
respectively.

If you enter the command:

to display page 3, the value for the current page is changed to 3, and the value for the highest page
remains at 10.

If you enter the command:

to display the next page, Com-plete determines the last page number displayed (in this case, page 3),
increments the page count by one, and displays the next page (in this case, page 4). In this example, the
current page value then becomes 4, and the last page value remains at 10.

If you enter the command:

to display the previous page, Com-plete determines the last page displayed from the current page value (in
this case, page 4), decrements the page count by one, and displays the page (in this case, page 3). In this
example, the current page value then becomes 3, and the last page value remains at 10.

If you enter the command:

to display the highest page written by the application program, Com-plete determines the value of the
highest page (in this case, page 10), increments the page count accordingly, and displays the highest page
written. In this example, the current page value then becomes 10, and the last page value remains at 10.

If you enter the command:

after having displayed the highest page written by the application program, Com-plete displays an error
message at the terminal, indicating that the application program did not create any more pages.

61

Terminal PagingCom-plete 6.2.1 Application Programming

The PLIMIT function enables the application program to dynamically interrogate the page number of the
current page and to change the value for both the current page and the highest page. This feature is
accomplished by using the PLIMIT function to pass data back and forth to Com-plete using a working
storage area in the application program.

The page number of the last page actually displayed on the terminal screen is optionally placed into the
working storage area of the application program by using the PLIMIT function. In addition, the current
page and the highest the page available for display is optionally set by the application program by use of
the PLIMIT function. If the PLIMIT function is not used, Com-plete sets the value of the current page to 1
and the value of the highest page to the number of the highest page written to the page file by the program.

The PLIMIT function is useful in a variety of circumstances. For example, if you want to change the
information contained in a particular page, the application program must use a Com-plete terminal I/O
function to read your entry. The PLIMIT function can then be used to determine the appropriate page
number of the page being modified before the PWRT function is used to actually write the change to the
page file.

The PLIMIT function is also useful when there are several pages in a page file, not all of which are
meaningful to the terminal operator. For example, if a paging file has 20 pages arranged as follows:

Pages 1 through 4 - instructions
Pages 5 through 13 - data
Pages 14 through 20 - programming notes

the PLIMIT function can be used to specify:

Current page = 5
Highest page = 13

If you enter the command:

pages after page 13 are not displayed, allowing you to avoid viewing the information on pages 14 through
20. Since the initialized current page value is 5, a note could be written on the first logical page of data
(page 5) indicating that instructions are contained on pages 1 through 4. You can then view pages 1
through 4 if desired (to read the instructions) by using a command such as:

Format

The format for using the PLIMIT function is:

PLIMIT (retcode,pagehi[,pagecur][,getpcur])

62

Com-plete 6.2.1 Application ProgrammingTerminal Paging

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

pagehi Required.
A binary halfword containing the number of the highest page to
be available for display. if pagehi is zero, the highest page
actually written to the page file will be used.

pagecur Optional.
A binary halfword containing the number of the page to be
displayed in response to the command *UP/C.Default: 1

getpcur Optional.
A binary halfword into which Com-plete places the number of the
last page displayed by the terminal operator.Default: None.

Return Codes

A return code of 0 is issued upon normal completion of the PLIMIT function.

Abends

An abnormal termination may occur during execution of the PLIMIT function. Possible causes
include:

The page number requested is invalid;

The page file was not open at the time the PLIMIT function was issued.

63

Terminal PagingCom-plete 6.2.1 Application Programming

Storage Access Functions and Task
Management
This part of the Application Programmer’s documentation describes functions relating to access to
external storage systems (including Adabas), as well as task managment functions.

This information is organized under the following headings:

Adabas & External Storage Access Functions

Task Management

64

Com-plete 6.2.1 Application ProgrammingStorage Access Functions and Task Management

Adabas & External Storage Access Functions
The external storage access functions enable an application program to read and write data to external
storage devices. Five types of external storage access are available to Com-plete application programs:

VSAM file I/O functions;

ISAM and BDAM file I/O functions;

SD functions;

CAPTURE function;

ADABAS interface.

Application programs can read and write data with VSAM data sets using VSAM access methods. In an
MVS environment, application programs can use ISAM and BDAM data sets using Com-plete I/O
functions. Note that data sets organized for access with an access method other than these cannot be
accessed under Com-plete using standard Com-plete access functions.

SD functions enable the application program to read and write data either sequentially or directly to
BDAM type data sets defined and allocated by the Com-plete SD access method. SD data sets are
normally small volume data sets allocated within the Com-plete SD library. The SD functions of
Com-plete enable the application program to allocate, read and write, and delete the data sets.

The CAPTURE function enables the application program to capture, or write, data to the Com-plete
Capture data set. Records can be written by the application program, but cannot be read. Information
written to the Com-plete Capture data set can be selected, or read, from the Capture data set using the
Com-plete batch utility program CUCTCAPT.

The ADABAS interface enables your to access ADABAS files. ADABAS is the data base management
system developed, marketed, and supported by SOFTWARE AG.

All external storage access functions can be used in the same application program, providing a wide range
of data storage and access techniques.

This chapter covers the following topics:

VSAM File I/O

ISAM & BDAM File I/O (MVS Only)

SD Files

CAPTUR Function

ADABAS Interface

65

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

VSAM File I/O
The Virtual Storage Access Method (VSAM) can be used by Com-plete application programs. Full use of
any type of VSAM data set or I/O function is provided; however, LOCATE processing of VSAM data sets
is not supported by Com-plete, because the VSAM buffers are maintained in a storage key different from
that of the application program.

Com-plete performs all VSAM requests without using an exit list. At the completion of the request, the
user’s ACB exits are called if there are any errors. Asynchronous journalling requests are not supported.

The use of VSAM under Com-plete is transparent to you and the application program. With the exception
of the use of terminal I/O functions, a batch VSAM program will execute as a Com-plete online program
with no modifications.

COBOL support of VSAM requires the use of a COBOL compiler (COBOL/VS) that supports VSAM file
processing. In general, all COBOL facilities provided for VSAM support can be used.

PL/I support of VSAM requires the use of a PL/I compiler that supports VSAM file processing. In
general, all PL/I facilities provided for VSAM support can be used.

In order to implement a program that uses VSAM processing techniques in a Com-plete environment, you
must fully understand the interface requirements. The basic interface consideration can be summarized as:

VSAM file definitions to Com-plete;

VSAM file definitions in programs;

VSAM file OPEN;

VSAM file I/O;

VSAM file CLOSE.

Each of these considerations is discussed below.

File Definitions to Com-plete

Application programs refer to files using DD/DLBL names. To establish the link between these names and
the corresponding data sets, all DD/DLBL names referenced by application programs must be declared
("cataloged" to Com-plete using the subfunction FM of online utility UUTIL. This declaration includes
the data set name, disposition (MVS only), the name of the VSAM user catalog (VSE only), and other
information (see below).

The data set is allocated to Com-plete dynamically when an OPEN request is issued against the
appropriate DD/DLBL name and deallocated when Com-plete is stopped, or when the file is closed
explicitly using the CLOSE or BATCH subfunctions of UUTIL FM.

In comparison with permanent data set allocation by JCL DD/DLBL statements, that was used with
previous versions of Com-plete, this mechanism provides maximum flexibility of data set access by
BATCH jobs and for data set maintenance (backup, restore, reallocation, rename, etc.) without the need of
restarting Com-plete.

66

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

The file declaration in UUTIL FM not only contains the name of the data set, but also defines all
parameters necessary for Com-plete to open the file. Options specified for a file in an application program
are ignored. Instead, Com-plete uses the parameters defined via UUTIL FM to build control blocks and
buffers once per DD/DLBL name. The parameters specified in the file definition to Com-plete must be
consistent with the file processing techniques used by application programs.

All online programs referring to a given DD/DLBL name share the same control blocks and buffers. This
allows efficient use of resources in the system, but also can significantly influence performance.
Therefore, careful choice of parameter values is recommended for files referenced frequently and by a
large number of terminal users.

The file definition parameters are described in the Com-plete Utilities documentation in the section
Function FM - File (DDN) Catalog Maintenance.

File Definitions in Programs

File definitions in the application program should be created according to standard conventions
established for the programming language being used.

From a Com-plete point of view, your only concern is that information placed in the application program
must not conflict with the DDN catalog definition in the Com-plete program library.

File OPEN Statements

VSAM file OPEN statements in an online program are the same as those for a batch program. As in batch
programs, the VSAM file must be opened via a standard OPEN statement before the first I/O request is
made. In an online program, the OPEN statement is actually processed by Com-plete and not by MVS/VS
VSAM. Com-plete establishes the necessary linkage to enable the application program to access the
VSAM data set. After a VSAM file is opened by an online program, the file remains open to Com-plete
until Com-plete is reinitialized or until the file is closed explicitly using the FM function of the UUTIL
utility. Subsequent OPEN processing is bypassed, except for establishing the logical connection between
the application program and Com-plete. Com-plete uses the DDN cataloged file definition to actually
open the data set. Thereafter, all accesses to the file by an application program uses the existing ACB
control block structure. This processing is transparent to the application program.

Note that a VSAM file actually remains open to Com-plete, not the application program, after the
termination of the application program. VSAM files are physically closed only at Com-plete termination
time or by a status change in the file initiated by use of the FM function in the UUTIL utility program.

If Com-plete encounters an error in preparing the file for access, an appropriate VSAM FILE STATUS
value is returned to the application program. The FILE STATUS is returned by Com-plete’s OPEN
processing or generated by Com-plete when indicating a non-VSAM error condition.

Non-VSAM FILE STATUS values that might be received from an OPEN request are:

67

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

136
x’88’

The file could not be opened because insufficient storage is available in the
Com-plete region to build the necessary control blocks and buffers.Suggested
response: Consult the system programmer responsible for Com-plete
maintenance.

152
x’98’

Security errors. A password for the file was specified when the file was
cataloged. This password was either not specified by the application program
or, if provided, did not agree with the catalog entry. Suggested response:
Provide the correct password or recatalog the DDN definition.

168
x’A8’

The DDNAME specified in the application program is invalid, not cataloged,
or unavailable for online access because the file was placed in batch status.
Suggested response: Ensure that the DDNAME specified in the application
program is the same as that defined in UUTIL FM, and that online access to
the file is enabled.

File I/O Operations

I/O operations to a VSAM file can proceed only if the file is successfully opened by the application
program. The appropriate I/O request statements (START, READ, WRITE, DELETE, and REWRITE)
can then be executed. Execution of these statements transfers control to Com-plete, and Com-plete
performs the actual I/O.

Com-plete schedules the I/O request using VSAM, providing file integrity on a control interval level
basis. If a record is requested that resides in a control interval being updated by another user, the request
receives a VSAM FILE STATUS code of 96.

When Com-plete returns to the application program after processing an I/O request, the VSAM FILE
STATUS value for the indicated file will have been set by Com-plete to either the value returned by
VSAM or an appropriate value used to indicate a non-VSAM error detected by Com-plete.

Non-VSAM FILE STATUS values that might be received from I/O requests are:

24
x’18’

The file is no longer available. During processing of the application program and
after the OPEN request has been processed, online access to the file was
disallowed because another terminal user disabled access with the FM function in
the UUTIL utility. Suggested response: Contact the system programmer
responsible for Com-plete maintenance.

84
x’54’

LOCATE processing was requested. LOCATE processing is not supported by
Com-plete.

153
x’99’

The type of processing requested (input or output) has been denied for the
terminal user by the security system.

154
x’9A’

The type of processing requested (for example, update a record, add a record,
read a record) conflicts with the options defined for the file in UUTIL
FM.Suggested response: Correct the options defined in UUTIL FM.

68

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

File CLOSE Statements

When an online application program issues the CLOSE statement, Com-plete severs the logical
connection between the program and the designated VSAM file(s). No subsequent I/O can be requested
without requesting that the file(s) be reopened.

Com-plete automatically closes any VSAM file left open at termination of the application program;
however, it is good practice and aids in system efficiency to close unused VSAM files. Note that the
CLOSE statement causes a logical disconnection from the file and does not result in the actual close of the
VSAM data set by Com-plete.

No FILE STATUS information is returned to the application program by Com-plete following a CLOSE
operation.

ISAM & BDAM File I/O (MVS Only)
ISAM and BDAM files are accessed using the Com-plete ISAM and BDAM interface functions
summarized in the following table.

Function Description

TFDEQ Release an exclusively held file to enable access by other programs.

TFENQ Place an exclusive hold on a file to exclude access by other programs.

TFGET Retrieve one or more records from a file.

TFGETU Retrieve a record from a file, with the intention of updating that record.

TFPUT Add one or more records to a file.

TFPUTU Write an updated record to a file as an update to that file.

Before any of these functions can be used successfully, the following conditions must exist:

Each file or data set to be accessed must be defined and allocated in the Com-plete initialization
procedure;

Each file or data set to be accessed must have a DDN entry defined in the Com-plete file catalog.
This procedure, referred to as "cataloging the DDN," is fully described in the Com-plete Utilities
documentation in the section Function FM - File (DDN) Catalog Maintenance.

Existing batch programs that access BDAM or ISAM files may continue to access those files with no
changes to their logic. In addition, batch programs accessing BDAM and ISAM files should use standard
file access techniques, rather than Com-plete file I/O functions.

For BDAM files, only RECFM=F is supported. If records are blocked when the file is created, Com-plete
performs automatic deblocking when the file is accessed. BDAM files must be allocated with
DCB=OPTCD=R (this can be overridden on the DD statement for the file in the Com-plete startup
procedure). All BDAM modules should be placed in the pagefixed RAM/LPA list to avoid possible S606
abends.

69

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

For ISAM files, only fixed length records are supported. The maximum blocksize supported is 10K, and
the relative key position must be larger than 0.

Retrieval of records for update is accomplished by using the TFGETU function. This function
automatically forces an exclusive ENQ for the file containing the record to be updated. The exclusive
ENQ is released when the TFPUTU function is executed to perform the actual record update. The
ENQ/DEQ logic of the file I/O functions requires that the program be resident between execution of the
two functions, TFGETU and TFPUTU; however, an ENQ remains in effect during a rollout caused by an
ADABAS call. No other terminal I/O functions or rollout functions can be used between execution of the
TFGETU and TFPUTU functions.

If the update of a record in a file is dependent upon information in one or more records in other files, the
other files must also have an exclusive ENQ placed upon them for the duration of the update process. This
is accomplished by using the TFENQ function. After the update process is complete, the TFDEQ function
is used to release the exclusive ENQ. As indicated for the TFGETU and TFPUTU functions, the use of the
TFENQ and TFDEQ functions requires the application program to be resident for the duration of
execution of these functions. Therefore, the application program can not issue a terminal I/O function or a
ROLLOUT function between execution of the TFENQ and TFDEQ functions. Note that an ENQ remains
in effect during a rollout caused by an ADABAS call.

The use of multiple ENQs by more than one program should be considered carefully, since an interlock
situation may occur. For example, if program A issues an ENQ for resource 1 and then resource 2, and
program B issues an ENQ for resource 2 and then resource 1, a hard wait interlock situation will arise.

Request Parameter List

Use of the Com-plete file I/O functions requires definition of a working storage area within the application
program called the Request Parameter List (RPL). The RPL contains information required by Com-plete
to perform requested file I/O operations. A separate RPL can be defined for each file to be accessed, but
only one RPL is Required.
The RPL may be shared by separate files, if the application program performs the necessary initialization
functions; however, if more than one file is to be accessed simultaneously, separate RPL definitions must
be established.

The format of the RPL is given in Request Parameter List .

TFDEQ Function (MVS Only)

The TFDEQ function is used to release an exclusive ENQ placed on a file against which the TFENQ
function was executed. The name of the file to be released is specified in the RPL. All other information
in the RPL is ignored.

An ENQ caused by execution of the TFENQ function is effective only while the executing program
remains in storage. If the active program is rolled out of storage by Com-plete before the TFDEQ function
is executed, the ENQ is lost prematurely, and the TFDEQ function has no effect. An ENQ remains in
effect during a rollout caused by an ADABAS call, but it is cancelled automatically when a WRT or
ROLOUT function is used. Therefore, if an application program issues a TFENQ function, neither
terminal I/O functions nor the ROLOUT function can be executed until execution of the TFDEQ function
is completed.

70

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

For example, if a program is performing a chained series of record additions to several files using data
entered by a terminal operator, the program should read all the data from the terminal before issuing the
TFENQ function against each file. After successfully adding the records to each file, the program should
then issue the TFDEQ function for each file to release each exclusive ENQ.

Format

The format for using the TFDEQ function is:

TFDEQ (retcode,rpl)

retcode Required.

A fullword where Com-plete places the return code upon completion of the
operation.

rpl Required.

The name of the working storage area where the RPL is located.

The DDNAME field of the RPL must be initialized prior to issuing the TFDEQ function. All other RPL
fields will be ignored.

Return Codes

The following return codes are issued by the TFDEQ function:

0 Normal completion.

4 A DEQ has already been issued for the file.

Abends

An abnormal termination may result during execution of the TFDEQ function. A possible cause is that the
file specified by the DDNAME field of the RPL was not found.

TFENQ Function (MVS Only)

The TFENQ function is used to force an exclusive ENQ on a file in order to guarantee file integrity while
record information is being accessed. The name of the file to be ENQed is specified in the RPL. All other
information in the RPL will be ignored.

When a record in a file is to be updated, the TFGETU function is used to retrieve the record, and the
TFPUTU function is used to update the record. The execution of the TFGETU function places an
exclusive ENQ upon the file and thus ensures file integrity for the specified update operation. The ENQ is
subsequently released with the TFPUTU function; however, if the record to be updated is dependent upon
record information in one or more additional files, no ENQ will have been established for the additional
files.

The TFENQ function is provided to enable the application program to force an exclusive ENQ on one or
more interrelated files. After the required record(s) have been processed, any outstanding ENQ for such
files must be released using the TFDEQ function.

71

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

An ENQ caused by execution of the TFENQ function is effective only while the executing program
remains in storage. If the active program is rolled out of storage by Com-plete before the TFDEQ function
is executed, the ENQ is lost prematurely and the TFDEQ function has no effect. An ENQ remains in
effect during a rollout caused by an ADABAS call, but it is cancelled automatically when a WRT or
ROLOUT function is used. Therefore, if an application program issues a TFENQ function, neither
terminal I/O functions nor the ROLOUT function can be executed until execution of the TFDEQ function
is completed.

For example, if a program is performing a chained series of record additions to several files using data
entered by a terminal operator, the program should read all the data from the terminal before issuing the
TFENQ function against each file. After successfully adding the records to each file, the program should
then issue the TFDEQ function for each file to release each exclusive ENQ.

Format

The format for using the TFENQ function is:

TFENQ (retcode,rpl)

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

rpl Required.

Specifies the working storage item that contains the RPL for the
indicated file.

The DDNAME field of the RPL must be initialized prior to issuing the TFENQ function. All other RPL
fields will be ignored.

Return Codes

The following return codes are issued by the TFENQ function:

0 Normal completion.

4 An ENQ already exists for the indicated file, or the file is in batch
status.

8 The application program has already ENQed the file.

Abends

An abnormal termination may occur during execution of the TFENQ function. A possible cause is that the
file specified by the DDNAME field of the RPL was not found.

TFGET Function (MVS Only)

The TFGET function is used to retrieve one or more records from a file. The file to be accessed is
identified through the use of an RPL.

72

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

The DDNAME field in the RPL identifies the file to be accessed. When the read operation is performed
against the indicated file, the number of records to be read is determined by the NUMBER-RECORDS
field of the RPL. The number of records specified is read and placed in the working storage area of the
application program. The recipient area is identified as an argument in the TFGET function.

The type of file being accessed, either BDAM or ISAM, is not indicated in the application program, but is
known to Com-plete through the DDname definition in UUTIL FM; however, the use of the TFGET
function arguments is dependent upon the type of access method to be used. Note that an improper
combination of arguments will result in abnormal program termination.

Three positional arguments are provided:

RPL identifier

Buffer area identifier

Record identifier

Files, whether BDAM or ISAM, can be accessed sequentially or directly. The choice of access is
identified in the RPL. If a file is accessed sequentially, the third argument of the TFGET function is
ignored, regardless of the file organization type. When a file is accessed directly, the third argument must
be provided.

If a BDAM file is to be accessed directly, the record argument must be provided. The record(s) to be
retrieved can be identified by a relative record number (relative to 1) or by its actual disk address
(MBBCCHHR), specified in the record argument. If more than one record is to be retrieved, the records
retrieved will be consecutive records beginning with the relative record indicated. If actual addressing
(MBBCCHHR) is used, only one block can be retrieved.

If an ISAM file is to be accessed directly, the record argument must be provided. The record to be
retrieved is identified by the key provided in the record argument. If more than one record is to be
retrieved, the records retrieved are consecutive records beginning with the record whose key is specified
in the record argument.

Format

The format for using the TFGET function is:

TFGET (retcode,rpl,area[,record])

73

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

retcode Required.
A fullword where Com-plete places the return code upon completion
of the operation.

rpl Required.
The request parameter list for the file.

area Required.
The buffer area in the program where the record(s) will be placed.

record Optional.
Default: None. This field is ignored if the file being accessed is
processed sequentially.A variable length field containing the
information required to perform a direct retrieval of a record. The
information in this field is used by both BDAM and ISAM access
methods; the format of the field depends upon which access method is
to be used. For ISAM files, this field contains the key of the record to
be retrieved.

Return Codes

The following return codes are issued by the TFGET function:

0 Normal return.

4 An exclusive ENQ is outstanding for the file, or the file is in batch
status.

8 An I/O error occurred while accessing the file.

12 An end-of-file condition has occurred.

16 A "no record found" condition has occurred. This return code will be
received only if the record was accessed directly.

Abends

An abnormal termination may occur during processing of the TFGET function. Possible causes include:

The RPL is invalid;

The file identified by the DDNAME field of the RPL was not found;

There is not enough free space in the application program thread region to accommodate the
necessary I/O buffer.

TFGETU Function (MVS Only)

The TFGETU function is used when updating a record in a file. When the TFGETU function is executed,
an exclusive ENQ is directed against the file and the specified record is retrieved. The exclusive ENQ
remains in effect until the record is rewritten using the TFPUTU function. No other program can access
the file during this interval.

74

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

Note that an ENQ caused by execution of the TFGETU function is effective only while the executing
program remains in storage. If the active program is rolled out of storage by Com-plete before the
TFPUTU function is executed, the ENQ is lost prematurely. An ENQ remains in effect during a rollout
caused by an ADABAS call, but it is cancelled automatically when a WRT or ROLOUT function is used.
Therefore, if an application program issues a TFGETU function, neither terminal I/O functions nor the
ROLOUT function can be executed until execution of the TFPUTU function is completed.

The DDNAME field in the RPL identifies the file to be accessed. When the read operation is performed
against the indicated file, only one record is retrieved. The NUMBER-RECORDS field of the RPL is
ignored. The record specified is read and placed in the working storage area of the application program.
The recipient area is identified as an argument in the TFGETU function.

The type of file being accessed, either BDAM or ISAM, is not indicated in the application program; it is
known to Com-plete through the DDname definition in UUTIL FM. Appropriate use of the TFGETU
function arguments is dependent upon the type of access method to be used. An improper combination of
arguments will result in abnormal program termination.

Three positional arguments are provided:

RPL identifier

Buffer area identifier

Record identifier

Files, whether BDAM or ISAM, can be accessed sequentially or directly. The choice of access is
identified in the RPL. If a file is accessed sequentially, the third argument of the TFGETU function is
ignored, regardless of the file organization type. When a file is accessed directly, the third argument must
be provided.

If a BDAM file is to be accessed directly, the record argument must be provided. The record(s) to be
retrieved is identified by a relative record number (relative to 1) specified in the record argument.

If an ISAM file is to be accessed directly, the record argument must be provided. The record to be
retrieved is identified by the key specified in the record argument.

Format

The format for using the TFGETU function is:

TFGETU (retcode,rpl,area[,record])

75

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

rpl Required.

The request parameter list for the file.

area Required.

The buffer area in the program where the record is to be placed.

record Optional.

Default: None. This field is ignored if the file being accessed is
processed sequentially.A variable length field containing the
information required to perform a direct retrieval of a record. The
information in this field is used by both BDAM and ISAM access
methods; the format of the field depends upon which access method is
to be used. For ISAM files, this field contains the key of the record to
be retrieved.

Return Codes

The following return codes are issued by the TFGETU function:

0 Normal return.

4 An exclusive ENQ is outstanding for the file, or the file is in batch
status.

8 An I/O error occurred while accessing the file.

12 An end-of-file condition has occurred.

16 A "no record found" condition has occurred. This return code will be
received only if the record was accessed directly.

Abends

An abnormal termination may occur during processing of the TFGETU function. Possible causes include:

The RPL is invalid;

The file identified by the DDNAME field of the RPL was not found;

There is not enough free space in the application program thread region to accommodate the
necessary I/O buffer.

TFPUT Function (MVS Only)

The TFPUT function is used to add one or more records to a file. The file to be accessed is identified
through the use of an RPL.

76

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

The DDNAME field in the RPL identifies the file to be accessed. When the write operation is performed
against the indicated file, the number of records to be added is determined by the NUMBER-RECORDS
field of the RPL. The number of records specified is read from the working storage area of the application
program and added to the file. The RPL fields NUMBER-OPTIONS and SEARCH-OPTIONS is ignored
during execution of the TFPUT function.

The type of file being accessed, either BDAM or ISAM, is not indicated in the application program; it is
known to Com-plete through the DDname definition in UUTIL FM. Appropriate use of the TFPUT
function arguments is dependent upon the type of access method used. Note that an improper combination
of arguments will result in abnormal program termination.

Three positional arguments are provided:

RPL identifier

Buffer area identifier

Record identifier

If a BDAM file is being accessed, the third argument, record, must be provided. The record to be added is
identified by a relative record number (relative to 1) specified in the record argument. If more than one
record is to be added, the records are added in sequential order, beginning with the relative record
indicated.

If an ISAM file is to be accessed, the third argument must be omitted. The record to be added is identified
by the key specified in the record itself. If more than one record is to be added, the records are added
consecutively, based on their keys.

Format

The format for using the TFPUT function is:

TFPUT (retcode,rpl,area [,record])

77

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

rpl Required.

The request parameter list for the file.

area Required.

The buffer area in the program where the record(s) to be added is
located. The NUMBER-RECORDS field in the RPL indicates how
many records exist in this area.

record Optional.

Used for BDAM files only.Default: None.A binary fullword
containing the relative record number of the first record to be added. If
multiple records are to be added, the relative record numbers of the
records to be added begin with the one specified in the record
argument and are incremented by one for each succeeding record. If
actual addressing (MBBCCHHR) is used, only one record can be
written.

Return Codes

The following return codes are issued by the TFPUT function:

0 Normal completion.

4 An exclusive ENQ is outstanding for the file, or the file is in batch
status.

8 An I/O error occurred while accessing the file.

12 A duplicate record was found while adding an ISAM record.

16 An add for a record was requested, but there was not enough space
available in the file.

Abends

An abnormal termination may occur while processing the TFPUT function. Possible causes include:

The RPL structure was invalid;

The file identified by the DDNAME field of the RPL was not found;

There was not enough free space available in the application program thread region to allocate the
required I/O buffer;

A relative record number was not specified when adding a record to a BDAM file.

78

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

TFPUTU Function (MVS Only)

The TFPUTU function is used to rewrite one record to a file after it has been retrieved with the TFGETU
function. The file to be accessed is identified through the use of an RPL.

The DDNAME field in the RPL identifies the file to be accessed. The record specified is read from the
working storage area of the application program and rewritten to the file. The RPL fields
NUMBER-RECORDS, NUMBER-OPTIONS and SEARCH-OPTIONS are ignored during execution of
the TFPUTU function.

The type of file being accessed, either BDAM or ISAM, is not indicated in the application program; it is
known to Com-plete through the DDname definition in UUTIL FM. Appropriate use of the TFPUTU
function arguments is dependent upon the type of access method to be used. Note that an improper
combination of arguments will result in abnormal program termination.

Two positional arguments are provided:

RPL identifier;

Buffer area identifier.

If a BDAM file is being accessed, the record to be rewritten is identified by the relative record number
argument used in the last TFGETU function for the indicated file.

If an ISAM file is to be accessed, the record to be rewritten is identified by the key given in the record
itself.

The TFGETU function is used to retrieve a record from a file when an update is to be performed to that
record; however, the TFGETU function should always be preceded by the TFGET function. Any terminal
I/O communication should be placed between the TFGET function and the TFGETU function. No
terminal I/O must exist between the TFGETU function and the TFPUTU function.

When a record is retrieved, the information from that record is normally written to the terminal for display
purposes with the intention of allowing the terminal operator to correct or modify the record for update
purposes. The terminal write operation causes the application program to be rolled out of the thread,
consequently nullifying any ENQ in effect for the designated file. Therefore, it is necessary to first
retrieve a record with the TFGET function, perform the necessary terminal I/O communication, obtain the
record a second time with the TFGETU function, verify that it has not changed, and update the record
with the TFPUTU function.

Format

The format for using the TFPUTU function is:

TFPUTU (retcode,rpl,area)

79

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

retcode Required.

A fullword where Com-plete places the return code upon
completion of the operation.

rpl Required.

The request parameter list for the file.

area Required.

The buffer area in the program where the record(s) to be updated
will be located.

Return Codes

The following return codes are issued by the TFPUTU function:

0 Normal completion.

8 An I/O error occurred while accessing the file.

Abends

An abnormal termination may occur while processing the TFPUTU function. Possible causes
are:

The RPL structure was invalid;

An update was requested for a record not retrieved with a TFGETU function.

SD Files
SD files are direct access files, or data sets, that are allocated, accessed, and maintained using the SD
access method of Com-plete. Each SD file allocated is suballocated within the Com-plete system SD
library COM.SD.

The common name SD acknowledges that SD files can be accessed either sequentially or directly. The
Com-plete SD access method is available to application programs through use of the SD functions. The
SD functions are summarized in the following table. Each of these functions is described in detail in a
later section in this chapter.

Function Description

SDOPEN Create an SD file.

SDWRT Write a record to an SD file.

SDREAD Read a record from an SD file.

SDCLOS Close an SD file.

SDDEL Delete an SD file from the disk.

80

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

SD files contain fixed length records and can be processed either randomly or sequentially. The maximum
size of an SD fileâ€ƒdepends on the installation parameters of the Com-plete SD library. The maximum
number of SD files that can concurrently be in use by an application program is five.

The SD file functions provide a flexible access method that allows many different kinds of access. Any
specific SD file can be simultaneously accessed or updated from applications executing from different
terminals at different COM-PASS levels and from batch applications.

SD files are used in the following ways:

As work files unique to an application session, (for example, editor work space);

As online data collection files to be processed by batch;

As a User Profile mechanism for tailoring applications to the preferences of specific users;

As data distribution techniques from batch programs to online applications.

SD files are uniquely identified by the combination of NAME and TID parameters specified in the SD file
function call. All SD file function calls for a specific SD file should have identical NAME and TID
operands.

Note that any sense of shared versus exclusive use of an SD file is totally the responsibility of the
conventions that you establish.

You must choose values for NAME and TID that are consistent with the NAME and TID values used by
other applications. That is, some applications require unique disk work areas, but other applications need
to share a work area. The SD files can manage both.

Shared SD Files

Applications that share an SD file use the same fixed NAME and TID operands. For example, if
the message-of-today needs to be displayed by all terminals accessing an application, then the
application could specify a NAME of "TODAY" and a TID of "SHR" in each SD file call. All
users of the application would be using one SD file.

Note that for applications that write shared SD files, no SD read-for-update/update or
write-next-unwritten record facility exists. If multiple programs are adding records to an SD file,
it is advisable to keep the record number of the next free record in the first record of the SD file.
Each application would then:

1. ENQ/LOCK on a serialization resource.

2. Read the first record.

3. Note the next free record number.

4. Increment the next free record number.

5. Write back the first record.

6. EQ/UNLOCK the serialization resource.

81

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

7. Write the noted record.

Unique SD Files

Applications that require a unique SD file by user must use a technique that guarantees a unique
NAME and TID combination.

Usually the terminal user’s user ID can be used as the NAME with a TID of "SHR" to ensure
that an SD file is unique to a given user and that the SD file can be used by that user from any
terminal.

If the SD file has meaning only during a single session with the application, then NAME could
be specified as "APPL09" with the TID operand omitted. The TID could also be specified as the
terminal ID, as retrieved by a GETCHR call. This allows the application to use the hirec
operand on with SDOPEN or the length operand with SDREAD or SDWRIT.

A file name conflict may arise if a program that is simultaneously active on more than one level
in a COM-PASS environment attempts to open an SD file. Com-plete provides a method to
ensure that files (for example, work files) have unique names. The system does this by inserting
the level number (a digit between 1 through 9) into the file name at user-specified positions. The
required positions are denoted by high-value bytes (X‘FF’). Note that the first character position
of the file name cannot be modified in this way.

In addition, if the TID value specified is negative (that is, the high order bit is set), Com-plete
will interpret this as a request for a level-dependent SD-file. The user can specify the level
required in the bottom 4 bits if these bits are all set (that is, X’0F’), then Com-plete will use the
current level.

An SD file can be read, written, or deleted simultaneously by two or more application programs.
If two or more application programs are processing an SD file and one of them requests a
deletion of the file, the file is physically deleted only after the last program accessing the file has
issued a close or delete request for the file.

SDOPEN Function

The SDOPEN function is used to create a new SD file or prepare an existing SD file for access. The
SDOPEN function must be used by an application program prior to accessing or deleting an SD file. More
than one SD file can be opened simultaneously, as long as five or less SD files are being accessed by the
application program. If more than five separate SD files are to be accessed, then at least one SD file
currently open will have to be closed before issuing another SDOPEN function.

When the SDOPEN function is issued, the status of the SD file is indicated by the return code value. If the
SD file is new, a return code of 0 is given. If the SD file already exists, a return code of 4 is given.

If a new SD file is being opened, the SD function arguments that must be specified are:

File name;

Record length;

Number of records.

82

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

If an existing SD file is being opened, the file name argument must also be specified; however, the
arguments that specify record length and number of records is ignored by Com-plete and used to return
the existing record length and the existing number of records to the application program. Note that the
record length and number of records cannot be changed for an existing file.

When an existing SD file is opened, the highest record written in the SD file can be identified with the
SDOPEN function by having Com-plete return the record number of the highest record written. This
feature can be used by an application program if it has a need to determine the last record written in the
SD file at any one time. This feature can also be used to determine the last record to read when reading an
entire SD file sequentially, thus avoiding reading records that have not been written.

If a program attempts to open an existing SD file, and Com-plete determines that the SD file does not
exist, Com-plete assumes that the open request is for a new SD file; therefore, when opening an existing
SD file, valid argument values should always be specified for record length and number of records. If,
after checking the return code, the application program determines that a new SD file has been opened
instead of an existing SD file, the SD file can be deleted and an error message written to the terminal.

Format

The format for using the SDOPEN function is:

SDOPEN (retcode,filnam[,length][,numrec][,tid] [,hirec])

83

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

filnam Required.

An eight-byte alphanumeric field that contains the name of the SD file
being opened.

length Optional.

Required for a new SD file.Default: For an existing SD file, the record
length will be returned. The maximum record length is 32752.For a
new SD file, a binary halfword containing the length of each record in
the SD file.

numrec Optional.

Required for a new SD file.Default: For an existing SD file, the
number of records allocated to the SD file is returned.For a new SD
file, a binary halfword containing the number of records to be
allocated for the SD file. The numrec for a new SD file remains as
initialized in the application program. Since SD files are allocated on a
track capacity basis, the application program can issue an SDCLOS
function followed by an SDOPEN function for the SD file, and numrec
will then contain the maximum number of records allocated for the SD
file.

tid Optional.

Default: If the tid argument is omitted, the TID value for the terminal
in use is assumed. The tid argument must be coded for an SD file
being accessed by a batch program. For a new SD file, a binary
halfword or a three-byte alphanumeric field containing the character
string SHR. For an existing SD file, tid specifies a binary halfword. If
the SD file was created with a tid value of SHR, then SHR must be
specified.

hirec Optional.

Default: hirec is initialized to zeros by Com-plete for a new SD file.
Com-plete returns the number of the highest record written for an
existing SD file.For an existing SD file, a binary halfword in which
Com-plete returns the record number of the highest record written to
the SD file.

Return Codes

The following return codes are issued by the SDOPEN function:

84

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

0 A new SD file has been opened.

4 An existing SD file has been opened.

8 An existing SD file has been opened, but the SD file is currently being
used by another application program.

12 The SD file has already been opened by the application program.

Abends

An abnormal termination may occur during execution of the SDOPEN function. Possible causes include:

The SD file being opened is larger than the maximum size allowed;

The SD file directory is full;

An unrecoverable disk error has occurred.

SDWRT Function

The SDWRT function is used when writing records to an SD file. All records written are fixed-length
records and can be written either sequentially or randomly.

The record to be written must reside in a working storage area of the application program. The application
program can optionally write the entire record or a portion thereof.

When an SD file is created, each record is assigned a sequential number from one to the number of
records requested. To write a record to an SD file randomly, the number of the record to be written must
be specified. If no record number is specified, Com-plete writes the next sequential record to the SD file.
Note that if this is the first SDWRT to a new SD file,numrecmust be specified.

Note also that the length of each record to be written can be specified, but cannot be larger than the record
length for the SD file as established when the file was created. If the length of data to be written is less
than the record size for the file, the remaining characters of the record are padded with binary zeros. If the
length of the record to be written is not specified in the SDWRT function, the record length established for
the SD file during the SDOPEN function for the SD file is used.

Format

The format for using the SDWRT function is:

SDWRT (retcode,filnam,area[,numrec][,tid][,length])

85

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

retcode A fullword where Com-plete places the return code upon completion
of the operation.

filnam Required.

An eight-byte alphanumeric field that contains the name of the SD file
to which the record is being written. The SD file specified by filnam
must have been previously processed by the SDOPEN function.

area Required.

A buffer area in the working storage area of the application program
that contains the record to be written.

numrec Optional.

Default: If numrec is not specified, the next sequential record is
written. Required on the first SDWRT to a new SD file. A binary
halfword that contains the number of the record to be written.

tid Optional.

Default: if tid is omitted, the TID value for the terminal in
conversation is assumed. A tid must be specified for all batch
programs.A binary halfword or a three-byte alphanumeric field that
contains the character string SHR. The value must be the same as that
specified when the file was opened.

length Optional.

Default: If not specified, the length is assumed to be the length
specified in the SDOPEN function for the SD file.A binary halfword
that contains the length of the data to be written.

Return Codes

A return code of 0 is issued upon normal completion of the SDWRT function.

Abends

An abnormal termination may occur during execution of the SDWRT function. Possible causes include:

The SD file was not previously opened;

The record number specified was greater than the maximum record number in the SD file;

The record number specified was negative;

An unrecoverable disk input/output error occurred.

SDREAD Function

The SDREAD function is used when reading records from an SD file. All records read are fixed-length
records and can be read either sequentially or randomly.

86

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

The record to be read is placed in a working storage area of the application program. The application
program can optionally read the entire record or a portion thereof.

When an SD file is created, each record is assigned a sequential number from one to the number of
records requested. To read a record from an SD file randomly, the number of the record to be read must be
specified. If no record number is specified, Com-plete reads the next sequential record from the SD file. If
no records have been read yet, the first record is read.

Note that the length of each record to be read can be specified, but cannot be larger than the record length
for the SD file as established when the file was created. If the length of data to be read is less than the
record size for the SD file, the amount of data requested is read. If the length of the record to be read is not
specified in the SDREAD function, the record length established for the SD file during the SDOPEN
function for the SD file is used.

Format

The format for using the SDREAD function is:

SDREAD (retcode,filnam,area[,numrec][,tid][,length])

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

filnam Required.

An eight-byte alphanumeric field that contains the name of the SD file
from which the record is being read. The SD file specified by filnam
must have been previously processed by the SDOPEN function.

area Required.

A buffer area in the working storage area of the application program
that contains the record after execution of the SDREAD function.

numrec Optional.

Default: if numrec is not specified, the next sequential record is read.
If no records have been read, the first record is read. A binary
halfword that contains the number of the record to be read.

tid Optional.

Default: If tid is omitted, the TID value for the terminal in
conversation is assumed. A tid must be specified for all batch
programs. A binary halfword or a three-byte alphanumeric field that
contains the character string SHR. The tid value must be the same as
that specified when the file was opened.

length Optional.

Default: If not specified, the length is assumed to be the length
specified in the SDOPEN function for the SD file. A binary halfword
that contains the length of the data to be read.

87

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

Return Codes

The following return codes are issued by the SDREAD function:

0 Normal completion.

4 The record requested has not been written to the SD file.

8 The record number requested is one larger than the last physical record
in the SD file; this is the equivalent of an end-of-file condition.

Abends

An abnormal termination may occur during execution of the SDREAD function. Possible causes include:

The SD file was not previously opened;

The record number specified was more than one larger than the maximum record number in the SD
file;

The record number specified was negative;

An unrecoverable disk input/output error occurred.

SDCLOS Function

The SDCLOS function is used to logically close an SD file. Because an application program can
simultaneously process a maximum of only five SD files, the SDCLOS function must first be used if it is
necessary to access more than five SD files.

Note that it is not necessary for an application program to issue an SDCLOS function. Com-plete closes
the SD file when the application program terminates; however, it is recommended that SD files be closed
when processing is completed. This facilitates more efficient operation of the system. In addition, since
the SDOPEN function passes a return code value that indicates usage of an SD file by more than one
application program, concurrent access of an SD file by more than one application program is logically
communicated in proper access sequence.

Format

The format for using the SDCLOS function is:

SDCLOS (retcode,filnam[,tid])

88

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

filnam Required.

An eight-byte alphanumeric field containing the name of the SD file to
be closed.

tid Optional.

Default: if not specified, the Terminal Identification number (TID) of
the terminal in use is assumed. A tid must be specified by all batch
programs that issue the SDCLOS function. A binary halfword or a
three-byte alphanumeric field that contains the character string
SHR.The tid must specify the same value as that specified when the
SD file was opened.

Return Codes

The following return codes are issued by the SDCLOS function:

0 Normal completion.

4 SD still in use by another user.

Abends

An abnormal termination may occur during execution of the SDCLOS function. Possible causes include:

The SD file was not opened;

The tid argument was not specified in the batch program.

SDDEL Function

The SDDEL function is used to delete, or scratch, specific SD files. SD files to be deleted with the
SDDEL function must be open at the time the SDDEL function is executed. Specifically, the SDCLOS
function must not have been executed prior to executing the SDDEL function.

The SDDEL function identifies the SD file to be deleted by file name and TID. If an SD file was created
with a TID value of SHR, then SHR must also be indicated in the SDDEL function.

If more than one application program is concurrently accessing an SD file and one of the accessing
programs issues an SDDEL function for the SD file, the SD file is marked for deletion. However, the
actual deletion occurs only after all application programs currently accessing the SD file have logically
closed the SD file, either expressly by executing the SDCLOS function or implicitly by program
termination.

89

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

Format

The format for using the SDDEL function is:

SDDEL (retcode,filnam[,tid])

retcode Required.

A fullword where Com-plete places the return code upon completion
of the operation.

filnam Required.

An eight-byte alphanumeric field containing the name of the SD file to
be closed.

tid Optional.

Required for batch programs.

Default: If not specified, the Terminal Identification number (TID) of
the terminal in use is assumed. A binary halfword or a three-byte
alphanumeric field that contains the character string SHR. If specified,
the tid must have the same value specified as that when the SD file
was opened.

Return Codes

The following return codes are issued by the SDDEL function:

0 Normal completion.

4 The SD file specified is currently being used by another application
program; deletion is pending.

Abends

An abnormal termination may occur during execution of the SDDEL function. Possible causes include:

The SD file was not opened;

The tid argument was not specified by the batch program requesting the SDDEL function.

CAPTUR Function
The CAPTUR function is used to write data from a program area to the Com-plete capture data set. The
data is written from an area specified by an area argument for the length specified by a length argument.
An identification argument is provided that must be used to pass a six-character identification code to the
CAPTUR function, if the program issuing the CAPTUR function is a batch program. The identification
argument is optional in an online program.

When a record is written to the capture data set, Com-plete automatically adds a variable-length header
that identifies the record being written. The format of this header is shown in Captur Record Header.

90

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

The CAPTUR function can be used to:

Keep a record of information for use in reports;

Store add or update transactions in an online environment and then perform the actual file add or
update I/O operation in batch at a later time;

Record audit information;

Record diagnostic messages created by an application program. The messages can then be used to
trace execution of a program and assist in finding errors.

Format

The format for using the CAPTUR function is:

CAPTUR (retcode,area,length[,identifier])

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

area Required.
The buffer area within the application program that contains the
data to be captured.

length Required.
A binary halfword containing the length of the user data to be
captured.

identifier Optional.
Default: If an identifier is not specified for an online program, the
compressed name of the program issuing the CAPTUR function
is placed in position zero of the CAPTUR record header.
Required for batch programs. An alphanumeric field containing a
six-byte identifier to be placed in position 14 of the CAPTUR
record header. An identifier is required if the program issuing the
CAPTUR function is a batch program, but is optional for online
programs.

Return Codes

The following return codes are issued by the CAPTUR function:

0 CAPTUR was successful.

4 CAPTUR was not successful. This condition would arise if the
CAPTUR feature were disabled.

Abends

91

Adabas & External Storage Access FunctionsCom-plete 6.2.1 Application Programming

Abnormal termination of the application program issuing the CAPTUR function can occur when
the CAPTUR function itself abnormally terminates. Possible causes for this condition are:

The length argument specified was invalid;

An argument address is invalid;

The identifier argument was omitted for a batch program.

ADABAS Interface
Application programs that communicate with ADABAS must use the standard ADABAS calling sequence
interface as illustrated below.

ADABAS (argument1,...,argument6)

The arguments available with the ADABAS call statement are fully described in the ADABAS Command
Reference documentation.

Note that this call differs from other calls in that the RETCODE parameter must not be specified.

Multiple ADABAS Nuclei

Access to multiple ADABAS nuclei is accomplished by setting the file number in the ADABAS Control
Block (ACB).

The ACB file number is a binary halfword. Set the file number to the actual file number plus 256 times
the data base ID.

If the data base ID is not specified, the default ID set at Com-plete initialization or as set by the
installation’s ULOPADAB exit.

Note:
Any ACB file number specified is cleared on return from ADABAS.

The Com-plete/ADABAS interface passes the supplied parameter list to a standard ADALNK module. Be
aware that the ADALNK (and ULOPADAB) are entered in the A-mode of the calling routine: this means
that if the program is running 31-bit mode, the parameter list must contain valid 31-bit addresses.

Return Codes Abends

The response to the ADABAS call is returned in the ADABAS control block. Please see the ADABAS
documentation for further details. Abnormal termination of the application program issuing the ADABAS
call may occur if the parameter list contains invalid addresses.

92

Com-plete 6.2.1 Application ProgrammingAdabas & External Storage Access Functions

Task Management
The task management functions of Com-plete enable an application program to load, execute, or invoke
another task or program.

In addition to these Com-plete functions, the application program can also choose to execute the following
operating system functions:

LOAD in MVS, or CDLOAD in VSE;

LINK in MVS;

XCTL in MVS;

DELETE in MVS.

These functions are, by definition, not available to an application program written in COBOL or PL/I,
except when used in a called Assembler subroutine.

Execution of the MVS functions is functionally equivalent to that described for the Com-plete functions.
The MVS functions, however, will resolve a load request from the resident portion of the operating
system, the resident portion of Com-plete, the thread region, or the STEPLIB library(s) of Com-plete in
MVS.

The following table lists the available task management functions:

Function Description

ATTACH Invoke another application program asynchronously.

CODEL Delete a program that has been loaded into the application program
area with the COLOAD function.

COEXIT Return control to a user program.

COLINK Pass control to a previously-loaded program. Control is returned to the
program issuing the COLINK function.

COLOAD Load another application program.

COXCTL Transfer control to a previously-loaded program. Control is not
returned to the program issuing the COXCTL function.

FETCH Fetch a program from the Com-plete program library, pass control to
the fetched program, and (optionally) pass data to the fetched program.

LOAD Load and initialize a table or module into the application program area
and (optionally) pass control to the table or module.

SCHED Allow the scheduling of a user task or transaction.

93

Task ManagementCom-plete 6.2.1 Application Programming

ATTACH Function
The ATTACH function causes a specified program to be loaded into a thread and executed asyncronously
with the calling program. The program to be attached can reside:

in the resident area of the operating system, or:

in the resident area of Com-plete, or:

in the application program thread region area, or:

in the Com-plete COMPLIB load library chain.

The thread selected for execution of the attached program is determined by the attributes of the attached
program, not by the calling program.

Data can be passed to the attached program using theareaandlength arguments of the ATTACH function.
The attached program can retrieve this data by issuing a terminal READ function. This read must be the
first terminal I/O operation issued by the attached programs; otherwise, the data transferred from the
calling program is lost.

Attached programs have some limitations on the types of functions they can perform. These limitations
are:

1. All terminal write functions performed by an attached program are converted to class 1 messages.
The destination terminal is the terminal from which the calling program is executing.

2. The attached program cannot perform a conversational write (WRTC) function. If a WRTC function
is issued, it is treated as a WRTD function, and the attached program terminates.

3. All terminal write functions performed by an attached program must be device-independent.
Attempts to perform a device-dependent write causes the attached program to be terminated
abnormally. Terminal mapping is a device-dependent function and, as such, causes abnormal
termination of the attached program.

4. Error messages issued by Com-plete for the attached program will be sent to the terminal from which
the calling program is executing via a class 1 message. If the attached program terminates
abnormally, an online dump is taken in the normal manner.

Several programs used in an online environment are suited for attached applications. These programs
characteristically perform functions that are relatively long and do not require completion prior to
continuation of input. Examples are programs that printout spool large reports or generate a batch of
updates for a file.

Since attached programs execute asynchronously with the calling program, the terminal in use by the
calling program is available to perform other functions while the attached program functions are being
performed. Attached programs are assigned a dummy terminal while executing, and the programs are
assigned the lowest priority for thread scheduling. It is important that attached programs be designed not
to remain in a thread for long periods of time without performing a terminal WRITE function or a
ROLOUT function. The execution of a terminal WRITE or a ROLOUT function permits higher priority
programs to be scheduled for execution in the thread.

94

Com-plete 6.2.1 Application ProgrammingTask Management

Format

The format for using the ATTACH function is:

ATTACH (retcode,name[,area,length][,userID])

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

name Required.
An eight-byte alphanumeric field containing the name of the
program to be attached. The name must be left-justified and
padded with blanks.

area Optional, no default.The name of the buffer area that contains
data to pass to the attached program. The attached program must
issue a READ function in order to retrieve this data. If this
argument is specified, length must also be specified.

length Optional, no default.A binary halfword containing the length of
the data to be passed to the attached program. Maximum length is
4094 bytes.

UserID Optional, no default.An eight-byte alphanumeric field containing
the user ID of the allocated program. It is left-justified and
padded with blanks. If an external security system is active
(RACF, ACF2 or TopSecret), Com-plete verifies that the user ID
under whose control the ATTACH function executes is
authorized in the SURROGAT class to submit jobs for the user
ID specified in this field.

Return Codes

The following return codes are issued by the ATTACH function:

0 No errors.

4 Unable to perform the ATTACH function because no dummy
TID is available for use by the attached program. If this problem
happens frequently, ask the system programmer responsible for
Com-plete maintenance to increase the value of the NOTIBS
keyword argument in the TIBTAB definition.

8 The program to be attached has not been found.

12 Security error. The user running the program is not authorized to
access the requested program.

16 The name of the program to be attached is not valid.

20 No space available in general buffer pool.

24 A user ID is specified, but either this user ID is not defined, or the
current user is not authorized to start programs with this user ID.

95

Task ManagementCom-plete 6.2.1 Application Programming

Abends

An abend may occur during the ATTACH operation. Possible errors include:

Invalid name argument;

Invalid area or length argument;

An attempt was made to attach a planned overlay type program.

CODEL Function
The CODEL function causes a program that has been loaded into the application program area to be
physically deleted from the application program area. The deletion will occur only if the CODEL function
has been issued as many times as the COLOAD function has been executed.

The CODEL function is used only after the COLOAD function. The COLOAD function is used to load
programs into the application program area. Each time a COLOAD function is successfully executed, a
use count of loads is maintained and incremented. When a CODEL function is executed for the same
program name, the use count is decremented. If the use count becomes zero and the copy of the program
is not currently being used to satisfy either the COLINK or COXCTL functions, the copy is physically
deleted from the program area. If the copy is currently being used to satisfy a COLINK or COXCTL
function, the copy is deleted only when it is no longer needed by these functions, and only if the use count
is still zero. This use count can become negative if more than 32,767 loads are issued with no intervening
deletes. In this situation, the loaded program cannot be deleted.

A program that has been loaded via the COLOAD function and not deleted via the CODEL will occupy
storage until the calling program terminates.

If the CODEL function is issued for a module that has been loaded via an SVC LOAD (that is, a
supervisor call, whether it is an Assembler subroutine or a compiler-generated call), the effect is the same
as if an SVC DELETE had been executed.

Format

The format for using the CODEL function is:

CODEL (retcode,name)

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

name Required.
An eight-byte alphanumeric field containing the name of the
program whose use count is to be decremented. The name must
be left-justified and padded with blanks.

The use count for the program identified by name is decremented by one. If the use count
becomes zero, the storage occupied by the program becomes available for other use
immediately, or as soon as it is no longer required for COLINK or COXCTL requests.

96

Com-plete 6.2.1 Application ProgrammingTask Management

Return Codes

The following return codes are issued by the CODEL function:

0 No errors. The use count has become zero, and the program has
been deleted unless it is currently being used by a COLINK or
COXCTL request.

4 The program was not deleted because the use count was not zero
or the program has been loaded more than 32,767 times more
than it has been deleted. In this situation, the use count becomes
negative, and the program cannot be deleted.

Abends

An abnormal termination may occur during execution of a CODEL function. Check to see
whether the name argument is invalid.

COEXIT Function
The COEXIT function may be used to return control to a user program which issued a COLINK to the
current program, or where the current program was entered via an XCTL request, to the program that
linked to this program. If control was given directly from Com-plete, issuing this function will terminate
the application and return control to Com-plete.

The format for the COEXIT function is:

COEXIT

There are no parameters associated with the COEXIT function.

Abends

There are no abends normally associated with the use of the COEXIT function.

COLINK Function
The COLINK function causes control to be passed to a specified program. The program to receive control
can reside:

in the resident area of the operating system, or:

in the resident area of Com-plete, or:

in the application program thread region area, or:

in the Com-plete COMPLIB load library chain.

Note that programs that use the MVS planned overlay concept cannot be loaded using the COLINK
function. The program indicated by the COLINK function returns control to the calling program in
one of the following situations:

97

Task ManagementCom-plete 6.2.1 Application Programming

COBOL - GOBACK;

PL/I - RETURN;

Assembler - BR R14.

If the COLINK program does not reside in memory and it has not previously been loaded using a
COLOAD or LOAD SVC function, Com-plete will load the program indicated from the Com-plete
COMPLIB load library chain into the application program thread region area prior to passing control. The
COLINK function, without an accompanying COLOAD function, should be used for modules requiring
one-time processing. The storage occupied by the colinked program will then be temporary storage only,
and will be freed when control is returned to the program that executes COLINK.

The COLINK program is deleted from the application program area upon return to the calling program
except when it has previously been the object of a COLOAD function and not that of a subsequent
CODEL function.

If a program has been loaded via either the COLOAD function or an SVC LOAD, the loaded copy of the
program is used to satisfy any load type request (that is, COLOAD, COLINK, COXCTL, CODEL, SVC
LOAD, SVC LINK, SVC XCTL, SVC DELETE).

Format

The format for using the COLINK function is:

COLINK (retcode,name[,argl]...[,argn])

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

name Required.
An eight-byte alphanumeric field containing the name of the
program to which control is to be given. The name must be
left-justified and padded with blanks.

argn Optional.
Any parameter(s) to be passed to the program identified by the
COLINK function. For COBOL, the CALLed program must use
the COBOL LINKAGE-SECTION to receive passed
arguments.A maximum of eight parameters can be specified.

Note:
For PL/I, the declaration of entry point for the COLINK and COXCTL function should not be
ASM, unless the target program is using Assembler linkage conventions [that is, Assembler,
COBOL, or PL/I with PROC options (MAIN)]. If multiple target types are to be used, create a
copy of the COLINK subroutine with a different name.

Return Codes

The COLINK function itself does not give a return code. Return is dependent upon the
application program identified by the COLINK function.

98

Com-plete 6.2.1 Application ProgrammingTask Management

Abends

An abnormal termination may occur during execution of the COLINK function. Possible causes
include:

The name argument is invalid;

Not enough storage is available to load the program identified by the COLINK function;

The COLINK program is not found either in storage or in the COMPLIB load library
chain;

A disk error occurred;

A security violation occurred;

The COLINK program is locked to a thread different from that of the calling program;

An attempt was made to load a planned overlay program using COLINK.

COLOAD Function
The COLOAD function is used to load a program into the thread region area of an application program.
The program to be loaded can reside:

in the resident area of the operating system, or:

in the resident area of Com-plete, or:

in the Com-plete COMPLIB load library chain.

If the program to be loaded is thread-locked, it must be locked to the same thread as that of the calling
program. If a copy of the COLOAD program resides in the resident portion of the operating system or the
resident portion of Com-plete, the program is not loaded into the application program thread region. In
this situation, any COLINK or COXCTL functions for the designated program uses the resident copy of
the program. For MVS systems only, planned overlay programs cannot be specified in a COLOAD
function.

The COLOAD function is normally used in conjunction with one or more subsequent COLINK functions.
This technique avoids unnecessary loading of new copies of the same loaded program with each call to the
COLINK function.

Each COLOAD function that successively loads a program into the application program thread region is
associated with a use count by Com-plete. This use count is used to maintain the load status of the
program. The use count is incremented by one for each successful COLOAD function and decremented by
one for each successful CODEL function. When the use count becomes zero, the program is automatically
deleted from the application program thread region, if it is not in use by an active COLINK or COXCTL
function.

If more than 32,767 COLOAD functions are successfully executed with no intervening CODEL functions,
the use count becomes negative. In this situation, the COLOAD program cannot be deleted, either
automatically or with CODEL.

99

Task ManagementCom-plete 6.2.1 Application Programming

The program to be loaded can optionally be loaded using an SVC LOAD macro statement in an
Assembler-written subroutine. If the program has previously been loaded into the application program
thread region using either the COLOAD function or the SVC LOAD macro, the use count for the load is
incremented by one. In addition, the loaded copy of the program is used to satisfy any additional load type
request (that is, COLOAD, COLINK, COXCTL, CODEL, SVC LOAD, SVC LINK, SVC XCTL, SVC
DELETE).

Format

The format for using the COLOAD function is:

COLOAD (retcode,name)

retcode Required.

A fullword where Com-plete places the return code upon
completion of the operation.

name Required.

An eight-byte alphanumeric field containing the name of the
program to be loaded. The name must be left-justified and padded
with blanks.

Return Codes

The following return codes are issued by the COLOAD function:

0 No errors.

4 The program to be loaded was not found in the COMPLIB load
library chain or in memory.

8 An I/O error occurred while loading the program.

12 Not enough memory was available in the thread region to load the
requested program.

16 A request was made to load a planned overlay type program.
Planned overlay programs cannot be loaded.

20 A security violation occurred.

24 The COLOAD program is locked to a thread different from that
of the calling program.

Abends

An abnormal termination may occur during execution of a COLOAD function. Possible causes
include:

The name argument is invalid;

Sufficient storage is not available to build the control block required to successfully
complete the load request.

100

Com-plete 6.2.1 Application ProgrammingTask Management

COXCTL Function
The COXCTL function is used to pass control to a specified program. The program to receive control can
reside in the resident area of the operating system, the resident area of Com-plete, or the application
program thread region area. The program indicated by the COXCTL function logically replaces the
calling program. The COXCTL function cannot be used to pass control to an MVS planned overlay
program.

If the program that issues the COXCTL function was given control by a COLINK function, the COXCTL
program returns control to the program issuing the COLINK; otherwise, termination of the COXCTL
program is absolute. Termination and/or transfer of control is generated in one of two ways:

Execution of a STOP RUN statement (COBOL) or RETURN statement (PL/I);

Execution of an EOJ function.

If the COXCTL program is not in memory and has not previously been loaded using a COLOAD or SVC
LOAD, Com-plete loads the program into the application program thread region area. The program using
the COXCTL function is deleted from the thread and is overlayed by the COXCTL program. Any
arguments passed to the COXCTL program are destroyed by this overlay if they reside in the calling
program.

If the COXCTL function causes the program to be loaded into the application program thread region, the
thread lock number of the COXCTLed program must either be the same as that of the calling program or
must not be thread-locked.

Format

The format for using the COXCTL function is:

COXCTL (name[,argl]...[,argn])

name Required.
An eight-byte alphanumeric field containing the name of the
program to which control is to be given. The name must be
left-justified and padded with blanks.

argn Optional.
Default: None.Any parameter(s) to be passed to the COXCTL
program.For COBOL, the called program must use the COBOL
LINKAGE-SECTION to receive passed arguments. For PL/I,
standard linkage conventions are used to pass arguments.

Note:
For PL/I, the declarations of entry point for the COLINK and COXCTL functions should not be
ASM, unless the target program is using Assembler linkage conventions [that is, Assembler,
COBOL, or PL/I with PROC options (MAIN)]. If multiple target types are to be used, create a
copy of the COXCTL subroutine with a different name.

Return Codes

101

Task ManagementCom-plete 6.2.1 Application Programming

There are no return codes associated with the COXCTL function. The COXCTL program does
not return control to the calling program.

Abends

An abnormal termination may occur during execution of a COXCTL function. Possible causes
include:

The name argument is invalid;

Sufficient storage is not available in the application program thread region to contain the
COXCTL program;

The COXCTL program was not found in the Com-plete program library;

A disk error occurred;

A security violation occurred;

The COXCTL program is locked to a thread different from that of the calling program;

An attempt was made to COXCTL to a planned overlay program.

FETCH Function
The FETCH function is used to fetch a program into the application program thread, pass control to the
fetched program, and (optionally) pass information to the fetched program. The program being fetched
can reside:

in the resident area of the operating system, or:

in the resident area of Com-plete, or:

in the Com-plete COMPLIB load library chain.

The FETCH function reinitializes the thread and establishes the program attributes of the program being
fetched. Note that the thread lock number assigned to the program being fetched may be different from
that of the calling program.

After execution of the FETCH function, the application program being fetched will receive control at its
entry point. If data is being passed to the fetched program, the first Com-plete terminal I/O function
executed by the fetched program must be a READ function to receive that data. If a terminal I/O function
other than READ is issued, the passed data is destroyed.

The fetched program is executed exactly like an initially called program with the exception that the READ
functions READS and READM cannot be used as the first READ function to be executed, since the data
to be read is in translated format.

Format

The format for using the FETCH function is:

102

Com-plete 6.2.1 Application ProgrammingTask Management

FETCH (name[,area,length])

name Required.
An eight-byte alphanumeric field containing the name of the
program to be fetched. The name must be left-justified and
padded with blanks.

area Optional.
Default: No data will be passed.A buffer area in the application
program thread region of the calling program that contains
information to be passed to the fetched program.

length Optional.
Must be specified if area is specified. Default: None.A binary
halfword containing the length of the data identified by the area
argument that is to be passed to the fetched program. The value
specified by length cannot exceed 4094 bytes.

When the area and length arguments are used in the FETCH function, the amount of data
specified is placed in a Com-plete terminal I/O buffer associated with the terminal in use. When
the fetched program receives control, the information in this buffer can be obtained by issuing a
terminal READ function; however, the terminal READ function must be the first terminal I/O
function issued by the fetched program, or the contents of the buffer are lost.

Return Codes

There are no return codes associated with the FETCH function. Standard linkage conventions
are followed by placing the address of the fetched module in register 15.

Abends

An abnormal termination may occur during execution of a FETCH function. Possible causes
include:

An invalid length argument was specified;

The name argument specifies an item not found in the program library;

An invalid area argument was specified;

A protection exception has occurred;

A disk I/O error occurred;

An attempt was made to fetch to a planned overlay type program.

LOAD Function
The LOAD function is used to load a table or module into the application program area and (optionally)
pass control to it. The table or module to be loaded must reside in the Com-plete COMPLIB load library
chain.

103

Task ManagementCom-plete 6.2.1 Application Programming

If the table or module is thread-locked, it must be locked to the same thread as that of the calling program.
The table or module to be loaded must be small enough to be loaded into the application program thread
region of the calling program. The catalog attributes, with the exception of the region specification, must
be the same.

After execution of the LOAD function, the application program can receive control at the instruction
immediately following the LOAD function or, if loading a module, can optionally pass control to the
module. If the table or module to be loaded does not exist in the program library, the LOAD function
terminates abnormally.

The LOAD function is used when loading a table or module into the application program thread region
and passing control to the instruction immediately following the LOAD function.

The LOADT function is used when loading a module into the application program thread region and
passing control to that module.

Format

The format for using the LOAD function is:

LOAD[T] ([epret],name[,area][,length])

epret Required for LOAD.A fullword where Com-plete returns the
entry point address of the module loaded.

name Required.
An eight-byte alphanumeric field containing the name of the table
or module to be loaded. The name must be left-justified and
padded with blanks.

area Optional.
Default: The load point of the calling program.A double
word-aligned buffer area in the application program thread region
where the table or module identified by the name argument is to
be loaded.

length Optional.
Default: The physical size of the table or module being loaded.A
binary halfword containing the length of the table or module to be
loaded. The storage area defined by the area and length
parameters or their defaults must fully reside inside an area of
storage available to the calling program.

Return Codes

There are no return codes associated with the LOAD(T) function. Upon return from the LOAD
function, register 15 contains the entry point address of the module loaded.

Abends

An abnormal termination may occur during execution of a LOAD function. Possible causes
include:

104

Com-plete 6.2.1 Application ProgrammingTask Management

An invalid length argument was specified;

The name argument specifies an item not found in the program library;

An invalid area argument was specified;

A protection exception occurred;

A disk I/O error occurred;

The item being loaded is locked to a thread different from that specified for the calling
program;

An attempt was made to load a planned overlay type program;

The item being loaded does not fit into the area specified or defaulted.

SCHED Function
The schedule (SCHED) function allows an application program to cause a conversational program to be
started at another terminal, as if there had been input from that terminal. This function is used by
Com-plete graphic support to schedule printing at graphics printers.

Format

The format of the SCHED function is:

SCHED (retcode,name,area,length,destlist,listlen,flag)

105

Task ManagementCom-plete 6.2.1 Application Programming

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

name Required.
Label of an area containing the name of the application program
to be started. Must be 8 bytes and padded with blanks.

area Required.
The label of a data area containing the input data to be presented
to the SCHEDed program when it issues a terminal read.

len Required.
The label of a halfword data area containing the length of the
input data.

destlist Required.
The label of a data area containing the names or numbers of the
terminal(s) to which the SCHED function is directed.Note that
each entry in destlist must be eight characters long, left-justified,
and padded to the right with blanks.

listlen Required.
The label of a halfword data area containing the number of
terminals in the destination list.

flag Required.
The label of a one-byte data area containing a flag to control
processing. The userid of the application issuing the SCHED
function is propagated to the SCHEDed task. If the flag byte is
x‘80’, the terminal to which the SCHED function is directed will
remain logged on to that userid after termination of the SCHEDed
program. If the flag is not x‘80’, the terminal will be logged off
after completion of the SCHEDed program.

Return Codes

The following return codes are issued by the SCHED function:

106

Com-plete 6.2.1 Application ProgrammingTask Management

0 Normal return.

4 Program not found.

8 A security violation has occurred. This can occur if the invoker of
the SCHED function does not have access to the requested
program, or if the terminal on which the program should be run
does not have the appropriate receive class codes.

12 An unrecoverable I/O error has occurred.

16 Too many receiving terminals were specified.

20 An invalid destination code was specified.

24 A negative segment length was specified.

28 The message text was too long. This return code is provided for
Class 16 messages only.

32 Not enough storage for request.

Abends

Abnormal termination may occur during the execution of a SCHED request. Possible causes
include:

An incorrect number of parameters was specified;

An invalid area or len argument was specified;

An invalid destlist or listlen argument was specified;

No eligible thread exists in which to run the scheduled program.

107

Task ManagementCom-plete 6.2.1 Application Programming

Message Switching and Printout Spooling
This part of the Application programmer’s documentation covers functions relating to message switching
and printout spooling functions. This includes NSPOOL spooling with Natural Front-End which runs
Natural under Com-plete

This information is organized under the following headings:

Message Switching/Printout Spooling

NSPOOL - Printout Spooling With Natural Front-End

108

Com-plete 6.2.1 Application ProgrammingMessage Switching and Printout Spooling

Message Switching/Printout Spooling
This chapter covers the following topics:

Overview

Message Switching

Printout Spooling

Overview
The Com-plete message switching and printout spooling functions enable online and batch application
programs to send messages or printout data sets to one or more terminals. The receiving terminal(s) can be
either a hard copy terminal device or a soft copy (display) terminal device.

Messages and printout data sets are both processed by the Com-plete message switching task, although
separate functions must be specified for each type of request.

The distinction between a message and a printout is normally the number of output lines and/or the type of
terminal device(s) to receive the output.

Messages
Messages are considered to be text that is not column- or line-oriented and that is comprised of
words, sentences, and paragraphs. Messages are also assumed to contain a relatively small amount of
data. Because of this, Com-plete will sometimes write a message to a terminal in a slightly different
format than it was sent. For instance, Com-plete attempts to start a line between words so that words
are not broken. 3270-specific WCCs and control attributes are not valid as data.

Printouts
Printouts are assumed to contain formatting and spacing that cannot be altered; they are also assumed
to contain a large amount of data. Because of this, lines are always written as is. If the receiving
terminal’s line length is too short, the output line will be truncated.

When a message switching or printout spool function is initially invoked, Com-plete creates a buffer core
queue in order to maintain tracking control over the message or printout. When the message or printout is
successfully received, the core queue is freed, and the space occupied becomes available for use. Although
core queues are relatively small in size, a large number of messages or printouts requires a large number
of core queue elements.

The core queue elements are used by Com-plete to enable message or printout restart/recover in case of an
abnormal system failure.

The message switching and printout spooling functions of Com-plete are available to both batch and
online programs. The message or printout awaiting receipt may be monitored by use of the Com-plete
online utility program USPOOL, which is described in the Com-plete Utilities documentation.

109

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

Message Switching
The message switching facilities of Com-plete enable an application program to send messages to one or
more terminals in the Com-plete network. The application program can be an online or batch program.

Messages can also be sent from a given terminal to one or more terminals without using an application
program. This facility is provided by the Com-plete online utility program UM, which is fully documented
in theCom-plete Utilities documentation. Message switching performed by an application program is
accomplished by use of the MESGSW function.

When a message is sent to a terminal, it is by default copied onto a disk file containing queues of
messages for each terminal. Messages can be recalled from this file by use of the UM utility program at
any time, as long as they have not been deleted.

Message Segmentation

Messages are formed in pieces called segments. Each segment cannot exceed 32,767 bytes in length.
There is no limit to the number of message segments that comprise a given message, although the size of
the message queue file itself is a limiting factor. Before a segmented message is written to the receiving
terminal device, the segments are linked together by Com-plete, and the message is sent as a single unit.

All messages, regardless of content, are treated as text when they are displayed at the receiving terminal.
They are printed or displayed using the maximum line length of the receiving device. A word that will not
fit at the end of a line is moved to the beginning of the next line. All blanks at the end of a message are
ignored.

Limited message output formatting can be accomplished by embedding the Com-plete terminal new line
symbol in the message text. The new line symbol is X‘15’. This symbol is device-independent and
produces the same results regardless of the device type to which the message is sent.

Destination Codes

When a message is sent, information stating where the message is to be received must be included. The
terminal(s) to receive the message can be specified by referencing one or more destination codes. Each
destination code is a TID number, a destination code that represents one or more TIDs, or a user ID.
Destination codes are defined by the installation to contain convenient groupings of TIDs. Procedures for
changing and adding destination codes are also defined by the installation. Destination codes used in a
message switching request are converted into TID numbers, and the message(s) is sent to the appropriate
terminals. If the destination code is a user ID, the notation "U=user-id" can be used to distinguish from a
group name.

The maximum number of terminals that can receive a message via the MESGSW function is 100, even if
a destination code is used. This maximum number restriction can be circumvented by sending multiple
copies of the same message, specifying 100 or fewer receiving terminals each time.

Class Codes

Security restrictions and other information about a message are designated by class codes. There are two
categories of class codes: security class codes (those numbered 1 through 4), and other class codes (those
numbered 8 through 16). Each message must have at least one security class code assigned, or the
message request will be unsuccessful.

110

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

Each terminal in the Com-plete network has two sets of security class codes assigned to it: one that
defines which message classes it can send, and one that defines which message classes it can receive. If
the accounting option is used, class codes are assigned through your User ID. If the accounting option is
not used or if you have not logged on to Com-plete, class codes are assigned through the terminal
definition table.

Messages must have security class codes assigned. Com-plete checks to be sure that the sending terminal
is authorized to send a specific message, since the class code(s) assigned to a message must be among the
sending class codes assigned to the sending terminal. Com-plete also determines that the assigned class
code(s) is(are) included in the receiving class codes of the terminal(s) to which the message is sent. If the
class codes are not compatible, the message is not sent, and in some cases, a security violation is logged to
the Com-plete logging device.

Several class codes (those numbered 8 through 16) cause certain special operations to be performed as a
message is sent. These operations and all the class codes are explained in the following figure.

Class codes 1 through 4 are used for security checking. Note that every message or printout must have at
least one of these classes.

Class 1 Standard message class.
Messages with this class assigned do not interrupt a terminal while it is
in conversation with a program.

Class 2 Urgent message class.
Overrides the MESSAGE DISABLED status of a terminal and causes
the message to be displayed immediately at the receiving terminal. The
receiving terminal is interrupted if it is in conversation with a program.
If the receiving terminal has the audible alarm feature, the audible
alarm will sound.

Class 3 Special purpose class code.
The message interrupts a terminal in conversation.
These messages are always restarted from the beginning if Com-plete
is reinitialized before they are sent successfully.

Class 4 Reserved for Com-plete logged messages.
No application program or terminal can initiate a Class 4 message.
These messages are exempt from restart in the event that Com-plete is
reinitialized before they have been received successfully.

The following class codes are referred to as other class codes. They cause special services to be performed
as a message is sent.

111

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

Class 8 Reserved for future usage.

Class 9 Reserved for future usage.

Class 10 Reserved for future usage.

Class 11 Reserved for future usage.

Class 12 Causes a message to be deleted from the message queue file after 30
minutes, if the message cannot be sent to the receiving terminal. These
messages are exempt from restart in the event that Com-plete is
reinitialized before they have been received successfully.

Class 13 Causes a message to be written without the standard message header
that normally accompanies all messages.

Class 14 Standard message class; no special action taken. These messages are
exempt from restart in the event that Com-plete is reinitialized before
they have been received successfully.

Class 15 Causes the audible alarm to be sounded when the message is written to
the terminal, if the receiving terminal has the audible alarm feature.

Class 16 Prevents a message from being queued to the message queue file on
disk. Instead, the message remains in main storage until it is
successfully sent. The length of a message using this class code is
limited to the amount of text that can be contained in one message
buffer. This amount can be calculated by doubling the number of
terminals to receive the specified message and subtracting this amount
from 240.For example, if there were three receiving terminals, a Class
16 message could be a maximum of 234 characters long; however, the
message would not be requeued upon restart.

Message Routing

With the exception of Class 13 messages, each message received has a standard header containing the
message identification number, date, time the message was written, and TID number of the terminal from
which the message was sent. The following display illustrates a typical header message.

MSG ID: 133, SENT 10/17/86 AT 1106, FROM TID 17
SAMPLE MESSAGE HEADER DISPLAY

If this header is not desired or if the five new line symbols appended to a message sent to a hard copy
device are not wanted, the message to be sent must be assigned Class code 13.

Messages sent to hard copy devices are written continuously. Messages sent to CRT devices require
acknowledgement after being displayed. Acknowledgement is accomplished by pressing the ENTER key.
If the message is not acknowledged immediately, the next null input entry will be considered an
acknowledgment. In addition, if an application program is in use at the receiving terminal, any screen
formatting in use may be destroyed. The specific procedures for recovering a screen format are
application-dependent, and the specific application in use at the time of the interrupt must be referenced
for recovery procedures. Note that, regardless of the acknowledgment procedures, the application in use is
not terminated, only interrupted.

112

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

If a message sent is longer than the buffer size for the receiving terminal and the display is not fully
displayed, an asterisk (*) is the last character displayed. The remaining portion of the message can be
displayed by pressing the ENETR key.

Messages sent to terminals cannot be received immediately for the reasons indicated below. When this
occurs, all messages not received are queued to the destination terminals. Since Com-plete uses buffers to
process terminal communication messages, a potential system problem exists. A large queue of messages
that cannot be sent could potentially saturate the buffer pool, disabling all terminal communications and
causing a system lockout condition. This situation can be avoided if application programs that send
messages use the GETCHR function of Com-plete prior to using the MESGSW function to interrogate the
message receipt status of the destination terminal(s). If the number of messages or printouts queued to a
destination terminal exceeds a specified value, the application program may issue a warning message to
the appropriate user, refuse to send additional messages until the number of queued messages is
acceptable, or take some other corrective action.

Three common situations in which messages sent to a terminal areNOTautomatically displayed are:

The terminal is MESSAGE DISABLED. Occasionally when messages are sent to your terminal, they
may interrupt and destroy whatever data is being entered at the time. To prevent this, the you can set
the terminal to disabled status for receipt of messages; however, disabled status does not prevent
Class 2 messages from being received.

A conversational program is executing at the terminal. If an active program is currently in use at the
receiving terminal, messages are placed in a special message queue for that terminal. The messages
are received when the application program terminates. This feature does not apply to Class 2 or 3
messages.

The previous message was not acknowledged. If a previously sent message has not been
acknowledged, additional messages are queued. This condition can occur only with CRT devices.

When a terminal is enabled for receipt of messages (for example, ending a conversational program,
removing the MESSAGE DISABLED status), any messages that have been placed in the message queue
are available for display. For CRT terminals, acknowledgment of each message queued to the terminal
causes the next message to be displayed until all have been displayed and acknowledged. Messages
queued to a hard copy terminal are printed automatically when the terminal is made available to receive
them.

When a terminal is MESSAGE DISABLED or in conversation, all UM utility commands can be used to
display specific messages or message information without altering the disabled or conversational status on
termination of any active program.

Alternate Terminals

Alternate terminals are terminals designated to receive message output for terminals that are inoperative,
currently in conversation with an online program, or disabled for message receipt. Alternate terminals are
assigned either through the terminal definition table (TIBTAB) or via the ALTERNATE command
function of UM.

If a terminal has an alternate terminal assigned and cannot immediately receive a message, any message
sent to it will automatically be displayed or written to the alternate terminal. Messages rerouted to an
alternate terminal are not queued to the original receiving terminal.

113

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

Disabled Terminals

Disabled terminals are terminals that have been disabled for receipt of messages by use of the DISABLE
command function of UM.

When messages are sent to a terminal, they may interrupt and destroy whatever data may have been
entered at the time the message was sent. To prevent this, the DISABLE command function of UM is
used. When messages (except those sent with Class 2) are sent to a disabled terminal, they are routed to an
alternate terminal, if one has been assigned. If an alternate terminal has not been assigned, the messages
are placed in the message queue for the disabled terminal. Class 2 messages override a DISABLED status
and are displayed immediately.

Messages sent to a disabled terminal, if not rerouted to an alternate terminal, are automatically displayed
when the terminal is once again enabled to receive messages.

Inoperative Terminals

Inoperative terminals are terminals that are either turned off, malfunctioning, or write-inhibited via a
switch.

Com-plete handles inoperative terminals in a manner similar to the way it handles DISABLED terminals:
messages sent to these terminals are rerouted to a designated alternate terminal, if one has been assigned.
If an alternate terminal has not been assigned, the messages are placed in the message queue for the
inoperative terminal.

Messages sent to an inoperative terminal, if not rerouted to an alternate terminal, are automatically
displayed when the terminal is once again able to receive messages.

Message Recovery

Messages sent to hard copy terminals are immediately written, if the terminal is in ready status and no
other messages are queued to the terminal.

The Com-plete message switching facility provides automatic message restart in the event that terminal
output is interrupted. Message restart is performed on a checkpoint basis. Each message sent to a terminal
is initially queued to the message switching file queue that resides on disk. Messages residing on the
message file queue are sent, or written, to the destination terminal on an availability basis. As messages
are written, a core queue checkpoint is taken to indicate the status of the output being written. For large
messages, this checkpoint is taken at the completion of each full page of output. If output is interrupted
(for example, by pressing the STOP key), output resumes at the last checkpoint when the terminal is again
made ready (for example, by pressing the START key).

If a system failure occurs, all message core queue checkpoint records are destroyed. When Com-plete is
again initialized, various message restart options are available, the default being recovery of message
output from the beginning of the output message. The system programmer responsible for Com-plete
maintenance should be consulted for more details on the message recovery options available after a
system failure.

114

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

Message Switching Control Block (MESGCB)

Before an application program can send a message, it must create and initialize a Message Switching
Control Block (MESGCB). The MESGCB is a working storage area in the program containing
information needed by Com-plete to control processing of the message.

Three types of information exist in the MESGCB:

Class codes;

Segment flags;

Message identification numbers.

You can set class codes before sending the message.

The segment flag is also set by the application program before sending the message. If the message is to
be treated as an entire message, the segment flag must be initialized to an L. If the message is to be treated
as a segment of the entire message, the segment flag must be initialized to a space (X‘40’). For segmented
messages, the segment flag must be initialized to an L when the last segment has been created and is ready
to send.

The message identification number must always be initialized to spaces. When the message is sent,
Com-plete uses this field and initializes it with the message number assigned to the message. If the
message is being sent in segments, the message number is set by Com-plete in this field after using the
MESGSW function to send the first segment.

The format and content of the MESGCB are illustrated inMessage Switching Control Block (MESGCB).

A DSECT of the MESGCB can be created using

name MCALL MESGCB

MESGSW Function

The MESGSW function is used by the application program to send a message or a message segment. The
message switching control block must have been defined and initialized prior to execution of the
MESGSW function.

Format

The format for using the MESGSW function is:

MESGSW (retcode,mesgcb,area,length[,destination][,number])

115

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

retcode Required.
A fullword where Com-plete places the return code upon completion
of the operation.

mesgcb Required.
The message switching control block to be used when sending this
message. This control block must have been previously defined and
initialized in the application program.

area Required.
A buffer area in the application program containing the message or
message segment to be sent.

length Required.
A binary halfword containing the length of the message or message
segment to be sent.

destination Optional.
(Required for the first segment of a message.)Default: None. This
keyword is ignored for message segments that are not the first
segment. A table defined in the working storage area of the application
program. This table contains destination codes and/or TIDs eligible for
receipt of messages. Each code in the table must be eight bytes long,
left-justified, alphanumeric in format, and padded to the right with
blanks. In some cases, you may need to use 10-bytes long table entries.
For example, to send to 7 or 8-byte user IDs using the U=userid
notation. Add 32768 to the actual number of destinations (see the
"number" parameter for details) to advise Message Switching to
interpret the destination table as having 10-byte entries. This is
equivalent to setting the high-order bit of the number halfword to one
in Assembler language programs.

number Optional.
(Required for the first segment of a message.) Default: None.A binary
halfword containing the number of destination codes (defined in the
previous table) that are to be used.

Return Codes

The following return codes are issued by the MESGSW function:

116

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

0 Normal return.

4 A message segment was requested. The segment requested was not the
first segment, and the first segment cannot be found. Probable
MESGCB control block error.

8 A security violation has occurred, caused by invalid class codes.

12 An unrecoverable I/O error has occurred.

16 Too many receiving terminals were specified.

20 An invalid destination code was specified.

24 A negative segment length was specified.

28 The message text was too long. This return code is provided for Class
16 messages only.

Abends

An abnormal termination may occur during execution of the MESGSW function. Possible causes include:

An invalid control block was specified;

An invalid area or length argument was specified;

An invalid number argument was specified;

A Class code of 4 was specified. Application programs cannot use Class code 4.

Printout Spooling
The Com-plete printout spooling functions enable an online or batch application program to generate print
output destined to be printed on a hard copy terminal. More than one program can generate printouts
destined for the same device, and individual printout data sets are spooled separately. The outputs are not
intermixed.

Print output is created by the application program one statement, or line, at a time; however, the print
output itself occupies a logical printout spool data set and is not available for printing on a terminal(s)
until the data set has been queued to the terminal(s). The functions available for printout spooling requests
enable the application program to allocate the printout spool data set, write the print output statements to
the data set, and queue the data set for scheduled printing. The printout spool functions available for use
by an application program are summarized in the following table.

Function Description

PSOPEN Allocate a printout spool data set.

PSPUT Write statements to the printout spool data set.

PSCLOS Queue the printout spool data to the destination terminal(s).

117

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

In addition to using the Com-plete printout spool functions to generate print output, the application
program must also define a Printout Spool Control Block (PSCB) in the working storage area of the
application program.

The information in the PSCB is used to identify the printout and to control the output form and the logical
output driver.

Specifying a logical output driver enables you to modify the listing during output. This facility can be
used to create extra output lines (for example, header, trailer) for each printout. In the event of changes,
you need only to change the logic of the logical output driver instead of changing all their application
programs. See the supplied modules LDRVSAMP and IPDSDRV in the Com-plete source for examples.

Since the printout spool facility of Com-plete also utilizes the message switching facility of Com-plete,
printout data sets must be assigned class codes in order to determine authorization for both the receipt of
printout spool data sets and the ability to generate printout spool data sets. The PSCB is referenced by
each of the printout spool functions and is used when defining the required authorization class codes.

The terminal(s) destined to receive a given printout spool data set is also defined in the working storage
section of the application program in a table of destination codes or TIDs. Since print output is spooled on
a printout spool data set basis, this table is referenced only by the PSOPEN function when defining the
printout spool data set.

Destination Codes

The terminals to which spooled printouts are destined are specified using TIDs defined in a table or by
referencing one or more destination codes also defined in a table. Both TIDs and destination codes can be
used in the same table. Each entry is defined as an alphanumeric entry, left justified, and padded with
blanks.

The destination ID "SYSOUT" is a special-purpose destination used to route a printout to the operating
system spool. The default output class in the operating system is "A". Note that the output class can be
modified by specifying SYSOUT=x as destination, where x represents the output class.

Each destination code represents one or more TIDs and is defined by the installation for convenient
groupings of terminals. Procedures for changing and adding destination codes are also set by the
installation.

Destination codes defined in an application program are converted to TIDs, and spooled printout data sets
are sent to the appropriate terminals. Multiple copies of a printout spool data set can be sent by specifying
the same destination entry more than once; however, the maximum number of receiving terminals per
printout spool function cannot exceed 100 terminals.

Class Codes

Security restrictions for printout spool data sets are designated by the message switching class codes. Each
terminal in the Com-plete network has two sets of security class codes assigned to it: one defines which
class codes are valid for sending, and one defines which class codes are valid for receipt. These class code
assignments are made on a terminal basis and, in the case of conversational type terminals, can be
overridden by the user ID of the terminal user after a *ULOG ON request is issued.

118

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

A printout spool data set must have a class code associated with it. Com-plete checks to be sure that the
terminal from which the application program is called is authorized to send the printout spool data set. The
class code(s) assigned to the printout spool data set must be among the sending class codes of the terminal
in use.

Com-plete also determines that the class code(s) assigned to the printout spool data set is included in the
list of receiving class codes of the terminal(s) to which the printout data set is sent. If the class codes are
not compatible, the printout data set is not sent.

The class codes available for use with the printout spool facility of Com-plete are Class codes 1 through 7.
These class codes are fully described in the previous section Message Switching. Class codes 8 through 16
are reserved exclusively for the message switching facility of Com-plete and should not be used with
printout spooling requests.

Disabled, Inoperative, and Alternate Terminals

A terminal destined to receive a printout spool data set can be disabled, inoperative, or have an alternate
assigned. The definition of these conditions and the resulting routing conditions that occur are fully
described in the previous section Message Routing.

Printout Spool Control Block (PSCB)

The Printout Spool Control Block (PSCB) is defined in the working storage section of the application
program. One PSCB must be defined for each printout spool data set to be used by the application
program.

The PSCB for a given printout spool data set is referred to by each printout spool function requested for
the data set and used to contain information needed by Com-plete to control the routing of the printout
data set. The following six types of information are contained in the PSCB:

Listname;
The listname must be established by the application program before use of the PSOPEN function.

Form name.

Logical output driver

Class codes;
The class codes settings are established by the application program before use of the PSOPEN
function.

Logical statement lengths;
The logical statement length identifies the length of each print output statement, and must remain
constant for the entire printout spool data set. Note that the maximum logical statement length is 220
bytes.

Printout identification numbers;
The printout identification number is a sequential number assigned by Com-plete to the printout
spool data set. Note that this number must not be modified by the application program or an
abnormal termination will occur in the application program.

119

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

The format of the PSCB is illustrated in Printout Spool Control Block (PSCB).

A DSECT of the PSCB can be created using

name MCALL PSCB,LRECL=nn

where nn is the length of the records to be written to the spoolfile.

PSOPEN Function

The PSOPEN function provides the information needed by Com-plete to create a printout spool data set.
The application program must initialize a PSCB for each printout spool data set for which the PSOPEN
function will be used.

Format

The format for using the PSOPEN function is:

PSOPEN (retcode,pscb,codes,numcodes)

retcode Required.
A fullword where Com-plete places the return code upon completion of the
operation.

pscb Required.
Specifies the printout spool control block defined for the printout spool
data set. This control block must have been previously initialized by the
application program.

codes Required.
Each entry in the table must be an eight-byte alphanumeric field,
left-justified, padded to the right with blanks.Specifies a table of
destination codes and/or TIDs to be used to identify which terminal(s) are
to receive the printout spool data set when a PSCLOS function is issued.

numcodes Optional.
Default: 1Specifies a binary halfword containing the number of entries to
be used from the codes table.

The maximum number of receiving terminals that can be specified by the PSOPEN function is 100. If
more than 100 terminals are to receive the printout spool data set, then the PSOPEN function must be
reused after the PSCLOS function is used. Alternatively, more than one PSOPEN function can be used
simultaneously using an additional PSCB for additional PSOPEN functions.

Return Codes

The following return codes are issued by the PSOPEN function:

120

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

0 Normal completion.

4 A PSCB control block error has occurred.

8 A security violation has occurred. The terminal in use is not authorized to send
the printout spool data set being requested for creation.

12 The class codes specified were invalid.

16 Too many receiving terminals were specified.

20 One or more destination codes were invalid.

24 An invalid record length was specified.

Abends

An abnormal termination may occur during execution of the PSOPEN function. Possible causes include:

An invalid PSCB control block was specified;

An invalid number of destinations was specified.

PSPUT Function

The PSPUT function is used to output, or write, a record from a working storage buffer area in the
application program to the printout spool data set named by the PSCB argument. Note that the record is
spooled to the data set. The record is not immediately sent to the destination terminal(s).

Format

The format for using the PSPUT function is:

PSPUT (retcode,pscb,area)

retcode Required.
A fullword where Com-plete places the return code upon completion
of the operation.

pscb Required.
Specifies the printout spool control block assigned to the printout
spool data set. This control block must have been previously defined
by the application program and must have been opened with the
PSOPEN function.

area Specifies a buffer area in the working storage area of the application
program containing the record to be written to the data set. The first
character of this field must be one of four carriage control characters:

blank Advance one line before printing.

0 Advance two lines before printing.

- Advance three lines before printing.

1 Advance to a new page before printing.

121

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

Return Codes

The following return codes are issued by the PSPUT function:

0 Normal return.

4 A PSCB control block error occurred.

12 An unrecoverable I/O error occurred.

24 An invalid logical record length was specified.

Abends

An abnormal termination may occur during execution of the PSPUT function. Possible causes include:

An invalid PSCB control block was specified;

The PSCB control block was not opened with the PSOPEN function;

An invalid area argument was specified.

PSCLOS Function

The PSCLOS function is used to logically close the printout spool data set identified by the PSCB
argument. Use of the PSCLOS function causes the identified printout spool data set to be queued for
printing to the destination terminals.

Format

The format for using the PSCLOS function is:

PSCLOS (retcode,pscb)

retcode Required.
A fullword where Com-plete places the return code upon completion
of the operation.

pscb Required.
Specifies the printout spool control block that identifies the printout
spool data set to be queued for output. This control block must have
been previously defined and opened by the application program.

Return Codes

The following return codes are issued by the PSCLOS function:

0 Normal completion.

4 A PSCB control block error occurred.

12 An unrecoverable I/O error occurred.

122

Com-plete 6.2.1 Application ProgrammingMessage Switching/Printout Spooling

Abends

An abnormal termination may occur during execution of the PSCLOS function. A possible cause is that
the PSCB was not opened.

123

Message Switching/Printout SpoolingCom-plete 6.2.1 Application Programming

NSPOOL - Printout Spooling With Natural
Front-End
This chapter describes the NSPOOL utility, Com-plete’s printout spooling facility for sites that run
NATURAL under Com-plete. This chapter is subdivided into the following sections:

This chapter covers the following topics:

Overview

NATURAL Security Definitions

NSPOOL Definitions and Authorizations

NSPOOL User Functions

Customization

Supported Functions and Subfunctions

Overview
CSPOOL is the Application Programming Interface (API) to Com-plete’s spooling utility and provides
NSPOOL functionality. The definition of the API, as well as customization information is given at the
back of this chapter, starting with the section Customization.

NSPOOL is an example NATURAL application distributed on the Com-plete installation tape and can be
modified to provide a site-specific printout spooling facility. NSPOOL permits the flexible management
and distribution of output to any online printer in the TP network.

Many applications require output to be printed on special forms. A problem often arises when different
applications require different forms to be mounted on the same printer at the same time. With NSPOOL,
you can create printouts on virtual printers that are not currently active in the system and subsequently
route the printouts through the TP network to the physical printer where the appropriate forms have been
mounted.

In addition, NSPOOL can be used to provide relevant information pertaining to each printout in the
system, thus providing a comprehensive overview of all queues for all printers. You can also display the
contents of a printout before requesting a print operation.

NSPOOL also supports the operation of online printers using commands such as DISPLAY STATUS,
HALT, and RESET. In addition, you can route any output from the online queues to the system spool by
using the special destination SYSOUT.

NSPOOL is completely menu-driven and provides the capability of full screen data entry. An online
HELP facility is also available to assist you.

124

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

NATURAL Front-end

NSPOOL provides a front-end written in NATURAL. This has implications both in the areas of security
and customization.

With NATURAL Security, user access to printers, printer groups and functions on printouts can be
controlled and maintained by the system administrator.

The NATURAL-based user interface allows site-specific adaptation to corporate standards, as well as
the integration of site-specific functions and features.

Note:
The system programmer for your Com-plete installation also has the option of restricting access to any
particular NSPOOL/USPOOL function via the UUSPL0 exit. Note that the exit takes priority over any
definitions made in NATURAL Security.

NATURAL Security Definitions
1. Under NATURAL 2.2, you must define NSPOOL as Library to NATURAL Security using the

Library Maintenance facility. Specify the following user exit in the library definition:

 USEREXIT: SPSE01-N

2. Additionally, for NATURAL Security version 2.2.6 and above, enter SYSSEC as Steplib using the
Additional Options (see the section Additonal Options in chapter Library Maintenance in the
NATURAL Security documentation). Note that you can only enter SYSSEC on entry level 1-8 (do not
use entry level 9).

3. Using the User Maintenance facility in NATURAL Security, you must link each user to the Library
NSPOOL. The link must be of type SL (special link), and you must specify user exit SPSE01-N in
the special link.

NSPOOL Definitions and Authorizations
The NSPOOL definitions immediately follow the NATURAL Security definitions. At the application
level, printers can be organized into groups that can be referred to in user authorizations. User
authorizations are made at the user level.

Printer Groups

Once NSPOOL has been defined as application (NAT21) or library (NAT22), the next screen allows you
to define up to five printer groups for the application NSPOOL , each containing up to five printers. This
table can be modified subsequently using the Modify Application/Library function of NATURAL
Security:

125

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

 --------------------------PRINTOUT-SPOOLING-SECURITY--------------------------
 APPLICATION DATA

 Application: NSPOOL Prt-Group: ___ Printer: ________

 Prt-Group: ___ Printer: ________ Prt-Group: ___ Printer: ________
 ________ ________
 ________ ________
 ________ ________
 ________ ________

 Prt-Group: ___ Printer: ________ Prt-Group: ___ Printer: ________
 ________ ________
 ________ ________
 ________ ________
 ________ ________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP --- END --- UPD --- --- --- --- ---- ---- ----

This table serves to make user authorization of printers more flexible: authorizing the user for one or more
groups allows him/her to access the printers specified in the group(s).

Meaning of the input fields:

Prt-Group Group identifier

Printer Printer name, or selection criteria to specify several printers:

* specifies all printers

prefix* Specifies all printers whose names start with
the prefix.

Press PF5 to save the printer group definitions.
Having reached the "Application Data" screen via the special link, you can branch immediately to the user
authorization for NSPOOL with PF10 or PF11 (the special link must already exist between user and
NSPOOL).

User Authorization

Once the special link between the user and NSPOOL has been defined, the next two screens allow you to
authorize the user to perform functions on specific printers in the printer overview and on specific
printouts in the printout queue.

These definitions can be modified subsequently by redisplaying the special link definitions for the user
and pressing ENTER to display the first Printout Spooling Security screen:

126

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

 --------------------------PRINTOUT-SPOOLING-SECURITY--------------------------

 Application: NSPOOL User: MBE linked as: ADMINISTRATOR

 disallowed = D
 allowed = A Printernames Functions
 -------------- ------------ ---------
 A *_______ *__ ___ ___ ___ ___
 _ ________ ___ ___ ___ ___ ___
 _ ________ ___ ___ ___ ___ ___
 _ ________ ___ ___ ___ ___ ___

 Functions: * - all following Functions
 PO* - Printer Overview (PO, POS, PON)
 PP* - position Printout (PPT, PPB, PPA, PPR) OPH - halt Printer
 OP* - operate Printer (OPH, OPR, OPS, OPM) OPS - start Printer
 OPM - mount Form of Printer OPR - reset Printer

 Note: Cancel current Printout (OPC) and flush all Queue-Entries (OPF) are
 controlled via the Function ’purge Queue-Entries (MQP)’.

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP --- END --- UPD --- --- MORE APPL ---- ---- ----

The top of this screen shows the application name (NSPOOL), the user ID for which the definition is
valid, as well as the user type.

The input fields are explained in the table on the next page:

127

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Disallowed/
Allowed

Specifies whether the user is or is not allowed to perform the

function(s) specified in the Functions field for the specified Printer
name. Possible options:

A: user is authorized.

D: function is disallowed for the user.

Printername Name of the printer or printer group for which the authorization is
valid. You can either specify a printer name, a group name, or
selection criteria as follows:

*: authorization is valid for all printers.

prefix*: authorization is valid for all groups or printers
whose names start with this prefix.NSPOOL
first checks the printer group names for a
match of selection criteria and if no match is
found, printer names are searched.

Functions Functions for which authorization is granted or denied. Available
functions are listed in the lower half of the screen. The first two
characters of the functions identify the function type (e.g., PP=Position
printer), the third character identifies the function as described in the
section Printer Overview below). You can specify any function value
listed (*, PO* PP*, OP*, OPM, OPH, OPS, OPR, note that wildcard
and prefix selection is possible). Note that any function value also
includes the PO function. Note also that the values in brackets in the
list of functions are valid only as a reference if your site wishes to
program its own frontend.

Press PF5 to save the printer overview function authorizations.
With PF8 you continue to the List Queue function authorization table.
With PF9 you can branch immediately to the printer group definition screen described above.

The List Queue function authorization table is illustrated on the next page:

The List Queue function authorization table:

128

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

 --------------------------PRINTOUT-SPOOLING-SECURITY--------------------------

 Application: NSPOOL

 disallowed = D
 allowed = A Originator Listnames Functions
 -------------- ---------- --------- ----------------------------
 A *_______ *_______ *__ ___ ___ ___ ___ ___
 _ ________ ________ ___ ___ ___ ___ ___ ___
 _ ________ ________ ___ ___ ___ ___ ___ ___
 _ ________ ________ ___ ___ ___ ___ ___ ___

 Functions: * - all following Functions
 LQ* - list Queue-Entries (LQ, LQS, LQN)
 DP* - display current Printout (DP, DPN)
 MQ* - modify Queue-Entries (MQU, MQC, MQM, MQP)
 MQU - update Queue-Entry
 MQC - copy Queue-Entry
 MQM - move Queue-Entry
 MQP - purge Queue-Entry

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP --- END --- UPD --- UP --- APPL ---- ---- ----

The input fields are explained in the following table:

129

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Field Meaning

Disallowed/Allowed Specifies whether the user is or is not allowed to perform the

 function(s) specified in the Functions field for the specified Originator
and Listname. Possible options:
A: -- user is authorized.
D: -- function is disallowed for the user.

Originator User ID of the printout owner. You can either specify a user ID or
selection criteria as follows:

*: authorization is valid for printouts belonging
to any user ID.

prefix*: authorization is valid for printouts belonging
to any user whose ID starts with this prefix.

Listname Name of the printout for which the authorization is valid. You can
either specify a list or printout name or selection criteria as follows:

*: authorization is valid for all printouts
according to the Originator specification.

prefix*: authorization is valid for all printouts whose
names start with this prefix, according to the
Originator specification.

Functions Functions for which authorization is granted or denied. Possible
function values are listed in the lower half of the screen. The first two
characters of the functions identify the function type (e.g.,
MQ=Modify Queue entries), the third character identifies the function
as described in the section List Queue below). You can specify any
value listed on the left of the function list (wildcard or prefix selection
is possible). Note that any function also includes the LQ function.
Note that the values in brackets on the right are valid only as a
reference if your site wishes to program its own front-end.

Press PF5 to save the printer overview function authorizations.
With PF7 you return to the Printer Overview function authorization table.
With PF9 you can branch immediately to the printer group definition screen described above.

Input Interdependencies

Note that if you fill one input field of an authorization table, you must also specify values in the other
fields on the same line.

If you enter an authorization in the Printer Overview authorization table, you must also specify
authorization parameters in the same line of the List Queue authorization table, otherwise default values
take effect (see below). This means that if you enter an A in the authorization field, you must at least fill
the function field of the Printer Overview table with PO* and the function field of the List Queue table
with LQ*.

130

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

Conversely, if you delete an entry from the Printer Overview table, you must also delete the entry from the
same line in the List Queue table.

Default Authorization

NSPOOL can be used with or without NATURAL Security.

If NSPOOL runs under NATURAL Security, the user’s logon user ID is searched in NATURAL Security.
If the user ID is not defined, the request for NSPOOL is rejected.

If the user ID is defined to NATURAL Security, authorization is assigned as follows:

If the user ID has a Special Link to the application, but no security entry is made in the link, the user is
assigned a default authorization. The default authorization consists of the following functions:

List all printers;

List all printouts belonging to the user ID;

Display any printout belonging to the user ID.

NSPOOL User Functions
To reach the NSPOOL Main Menu, enter the following command:

*NSPOOL

The following screen appears:

------------------------------PRINTOUT-SPOOLING-MAIN-MENU------------------------
 OPTION ===>
 Userid MBE
 Time 09:15:49

 1 LQ - List Queue
 2 PO - Printer Overview
 3 SQ - Select Listings
 4 SP - Select Printer

 END EXIT - Exit Spool
 HELP HELP - Display Help Information

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP END

131

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

The NSPOOL Main Menu provides access to the major spooling management functions in the middle of
the screen.

You can execute the listed functions (LQ, PO, SQ, SP) by either entering the corresponding function
number in the OPTION field. You can leave NSPOOL with the END command (PF3) or invoke the help
system by pressing PF1.

The spooling management functions available from the NSPOOL Main Menu are summarized in the
following table and discussed in the remainder of this chapter.

Option Function Explanation

1/3 LQ/SQ Allows spooling display and manipulation specified by printout.

2/4 PO/SP Allows spooling display and manipulation specified by printer.

Note that the SQ and SP functions allow a more specific selection of output than the LQ and PO functions
(see the sections List Queue and Printer Overview below).

General PF Key Assignments

You can use the CLEAR key to return to terminate NSPOOL from any screen. The PF3 key returns you to
the previous screen. Note that entering one of these keys on the Main Menu terminates NSPOOL.

Use PF1 to invoke the appropriate help display for the current screen. Type a question mark (?) in any
input field to invoke a help window for the field.

List Queue

To display and/or modify one or more printouts, select one of the List Queue functions from the NSPOOL
Main Menu.

SQ Function

If you select the SQ function (number 3 on the main menu), a window opens in which you can enter
selection criteria to restrict the output to display specific items:

132

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

 --------------------------PRINTOUT-SPOOLING-MAIN-MENU-------------------------
 OPTION ===> 3
 Userid MBE
 Time 10:41:07

 1 +---------------------------+
 2 ! !
 3 ! To confine Display !
 4 ! of List-Queue, !
 ! enter Listname: ________ !
 END ! Format: ____ !
 HELP ! Printer: ________ !ormation
 ! User: ________ !
 ! Logical Driver: ________ !
 ! Disposition: _ !
 +---------------------------+

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP END

The items in the window correspond to some column headings in the output display (see next figure). The
following input values are valid:

name specific name of the item.

* select all items (default).

prefix* select all items with this prefix.

prefix> display all items, starting from item with this prefix.

SQ/LQ

If you select the function LQ (number 1 from the main menu) or enter selection criteria in the prompt
window invoked by the SQ function, the printout queue is displayed in the following format:

133

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

 -----------------------------------LIST-QUEUE---------------------------------
 COMMAND ===>

 FC Listname List-No Form Disp Lines Copy Pri Userid Log-Drv Printer
 A>______ ____ _ ________ ________ ________
 * ***************************** top of list *****************************
 . RKLLISTE 43 H 199 0 8 RKL DAEPRT15
 . HARDCOPY 220 R 50 0 8 JWO DAEPRT53
 . HARDCOPY 267 R 50 0 8 TSH DAEPRT53
 . HARDCOPY 268 R 36 0 8 JWO DAEPRT53
 . RMT 281 R 554 0 8 RMT STUPRT06
 . HARDCOPY 283 R 26 0 8 JWO DAEPRT53
 . HARDCOPY 289 R 58 0 8 WHE DUENN535
 . HARDCOPY 377 R 50 0 8 FMU DAEPRT63
 . HARDCOPY 379 R 54 0 8 FMU DAEPRT63
 . XCOMV012 473 R 569 0 8 WSL HAMPRT01
 * *************************** bottom of list ****************************

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP MENU END DOWN DATE

The above example display was generated by entering A> in theListname field of the window invoked by
the SQ function (see previous figure).

You can modify the output by entering selection criteria in the input fields under some of the column
headings as described under the headingSQabove.

Note that each line represents one printout.

If the number of printouts exceeds the screen size, press PF8 to scroll down.

Press PF11 to display the date and time the printout(s) were created in place of the Log-Drv and Printer
columns. PF10 redisplays the Log-Drv and Printer names.

The meaning of the fields are explained in the table on the next page.

The following table describes the column headings on the NSPOOL List Queue screen.

134

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

Field Meaning

FC Specifies the Function Code. Type the value directly over the "." in the
FC column. The following values are permitted:

S SHOW function: Displays the contents of
the specified printout at your terminal. (This
invokes the "Printout Queue Display".) See
the section Display Printout on Screen later
in this chapter.

M MOVE function: Moves the printout to
another printer, that is, queues it for another
printer and deletes it from the queue of the
original printer. Note that this value must be
accompanied by a new name in the Printer
field. The values for Pri (priority) and Copy
(number of copies) can also be modified at
the same time.

C COPY function: Same as M (above) except
that the printout is copied, not moved; that
is, it is not deleted from the queue of the
original printer.

P PURGE function: Purges the printout from
the printer queue.

U UPDATE function: Updates the
specifications of the printout. All fields
marked as modifiable can be changed.

Listname Specifies name of the printout as specified by the originator.

List-No Specifies the Com-plete identification number assigned to the printout.

Form Specifies the printout form specification (is modifiable).

135

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Field Meaning

Disp Specifies the disposition of this printout:

I Is inputting, that is, the printout has not
finished.

R Is ready; is waiting for printer to get ready.

H Is ready but will be held until Disp is
changed to "R."

L Is ready and printed, but is still left in the
spooling system.

O Is outputting, that is, the printout is currently
being printed.

Note that "R" Disp status can be modified to "H" or a
request to leave the printout in the spool (Disp "L") can
be made. In addition, "H" can be changed to "R" or a
request to leave the printout in the spool ("L") can be
made.

Lines Specifies the number of text lines for this printout.

Copy Specifies the number of additional copies requested for this printout
(modifiable).

Pri Allows the priority of the printer to be specified. Note that the highest
priority is 1. This field is modifiable to generate a list according to
priority.

Userid Specifies the User ID of the printout originator.

Either:

Log-Drv Specifies the name of the logical output driver routine, which can
perform additional output formatting during printing. This field is
modifiable to generate a list according to logical output driver.

Printer Specifies the name of the destination for this printout (modifiable with
the COPY or MOVE function).

Or:

Date Date the printout was created.

Time Time the printout was created.

Route to System Printer

You can route printouts within the Com-plete TP spooling system to the operating spooling system by
using the COPY and MOVE functions (see the preceding table) and defining SYSOUT as the new printer
name. The output is then be transferred to the output class "A" as default. To select another output class,
specify SYSOUT=x.

136

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

List Queue Commands

You can issue any of the following commands from the command line of the List Queue display screen:

Command Meaning

MENU Return to NSPOOL main menu.

END Return to previous screen.

HELP Display spooling help menu.

PO Call Printer Overview.

LQ Call List Queue.

DOWN Scroll forward.

DATE Switch display to DATE/TIME mode.

DEST Switch display to LOG-DRV/PRINTER mode.

The available functions for displayed printouts are described in the above table in the explanation of the
column headed FC.

Printer Overview

To display and/or operate one or more printers, select the PO or SP function from the NSPOOL main
menu (number 2 or 4 respectively).

SP

If you select the SP function (number 4 on the main menu), a window opens in which you can enter
selection criteria to restrict the output to display specific items:

The items in the window correspond to some column headings in the output display (see next figure). The
following input values are valid:

name name of the item (printer name, terminal ID or printer status).

* select all items (default, not valid for Tid-Nr.).

prefix* select all items with this prefix (not valid for Tid-Nr.).

prefix> display all items, starting from item with this prefix (not valid for
Tid-Nr.).

Note that the Printer-Name field and Tid-Nr. field are mutually exclusive.

SP/PO

If you select the function PO (number 2 from the main menu) or enter selection criteria in the prompt
window invoked by the SP function, the printer overview is displayed in the following format:

137

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

 --------------------------------PRINTER-OVERVIEW------------------------------
 COMMAND ===>

 FC Printer Tid Dev-Type Status Form Q-Num
 ________ ____ ________
 * ***************************** top of list *****************************
 . SYSOUT 1 BATCH WAIT 0
 . DUPPRT14 2 3288 L SIMLOGO 3
 . DAEPTR75 3 3288 L SIMLOGO 2
 . SAEPRT25 4 3288 L SIMLOGO 1
 . DAERPT35 5 3288 L SIMLOGO 2
 . DUGPR14 6 3288 L SIMLOGO 1
 . HUGO 7 3288 L SIMLOGO 2
 . LPRTSM02 8 3288 L SIMLOGO 1
 . LPRTSM03 9 3288 L SIMLOGO 1
 . LPRTSM04 10 3288 L SIMLOGO 1
 . FF 11 3288 L SIMLOGO 2
 . DAEPRT1 12 3288 L SIMLOGO 2
 . MZCPRT 13 3288 L SIMLOGO 3
 . XXX00001 14 3288 L SIMLOGO 1
 . DAEPTR30 15 3288 L SIMLOGO 3
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 HELP MENU END TOP DOWN

The above example display was obtained by invoking the SP function and leaving all fields blank in the
prompt window (see previous figure).

You can modify the output by entering selection criteria in the input fields under some of the column
headings as described under the heading SP above.

Note that each printer name can be associated with either a real or virtual printer.

If the list of printers exceeds the screen size, press PF8 to scroll down. Press PF6 to redisplay the first
output page.

The meaning of the fields according to column heading is described in the table on the next page:

The following table describes the column headings on the NSPOOL Printer Overview screen.

Field Meaning

FC Specifies the function code. Type the value directly over ’.’ in the FC
column. The following values are permitted:

M MOUNT new form function: Mount another output format on the
printer. Note that this value must be accompanied by a new entry in
the "FORM" field.

S START printer function: start a printer that has been halted.

R RESET function: recover after I/O error.

H HALT function: halt current printout.

138

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

Field Meaning

P POSITION printout function: positions the current printout, that is,
stops printing and resumes printing at any specified page within the
printout. You specify the place at which printing is to be resumed by
filling the Mode and Num parameters in the prompt window that
appears when invoking the P function. Possible values for the Mode
field are:

T Top Printing will resume from the top of the
printout.

B Bottom Printing will resume from the bottom of
the print-out (last page is printed).

A Absolute Printing will resume at the page
specified in the Num field.

R Relative Printing will resume nnn pages from the
current page forward or backward. The
number of pages must be specified in the
Num field. Forward pages are specified
by the number, backward pages the
number preceded by the minus sign(e.g.,
-5).

Q QUEUE function: Displays the queue for the printer, that is, switches
to the List Queue of Printouts display. (This function is the same as
selecting the NSPOOL Main Menu LQ function, described earlier in
this chapter).

C CANCEL function: Cancels the current printout for the printer, that is,
the List Queue of the current printout is displayed. The field FC is
filled with value "P". Press to purge the list. Printing will resume with
the next printout.

F FLUSH function: Cancels all queue entries for this printer. Is the same
as cancel current printout for all printouts of the printer.

Printer Specifies the logical name of the printer.

Tid Specifies the unique Terminal ID as specified in the TIBTAB.

Dev-Typ Specifies the device type of the printer.

139

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Field Meaning

Status Specifies the current status of the printer. Possible values:

WAIT Is waiting for work.

RUN Is currently active.

HALT Is held up due to operator intervention.

ERROR Is held due to physical I/O error during
output.

SIMLOGO Is currently in simlogon required status.
This status is indicated if output was
scheduled for this printer and Com-plete is
waiting for a session to be established.

INTVREQ Is waiting for operator intervention (for
example, paper is out), before the printer
can be put online.

UNDEFIN Is currently undefined in the spooling
system.This status is indicated if output was
scheduled for this printout, but Com-plete
has no corresponding active session.

Form Specifies the output form currently mounted on printer. You can
change the form by typing M in the function field, a new form ID in
the Form field and pressing .

Q-Num Number of printouts in the queue for this printer.

Printer Overview Commands

You can issue any of the following commands from the command line of the Printer Overview display
screen:

Command Meaning

MENU Return to NSPOOL main menu.

END Return to previous screen.

HELP Display spooling help menu.

PO Call Printer Overview.

LQ Call List Queue.

DOWN Scroll forward.

TOP Restart printer overview from the top.

The available functions for displayed printers are described in the above table in the explanation of the
column headed FC.

140

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

NSPOOL Display Printout on Screen (SHOW or QUEUE Function)

The SHOW or QUEUE function enables you to display the contents of a specific printout at your terminal.
You can request the display from either the List Queue screen (Function Code "S") or from the Printer
Overview screen (Function Code "Q").

The following figure shows a sample of the output produced by selecting this function.

 --------------------------------PRINTOUT-DISPLAY------------------------------
 PRINTOUT: RKLLISTE COLUMNS 001 079
 COMMAND ===>

 ********************************* top of list ********************************
 109:03:50 Current Object MTMENU0P in library SG--PROD 92-02-05
 0010 * MTMENU0P SAG System Products Maintenance Tool Menu GW 88-02-06
 0020 *
 0030 DEFINE DATA
 0040 GLOBAL USING MT00000G
 0050 LOCAL USING +PFK-LDA
 0060 LOCAL USING MTMENU0L
 0070 LOCAL 1 #I (I2)
 0080 END-DEFINE
 0090 *
 0100 * --
 0110 DEFINE SUBROUTINE INITIALIZATION
 0120 * --
 0130 *
 0140 ASSIGN #PF-VALUE (3) = ’END’
 0150 ASSIGN #PF-VALUE (6) = ’SYS’
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 END DOWN LEFT RIGHT

When viewing the printout, use PF8 to display the next page (if there are more lines available). To shift
the start column of the output to the left, use PF10 to shift to the right, use PF11. The maximum line size
of the output is 256 characters. Normally the columns 1 to 79 will be shown. Most of the printouts have
133 columns. In this case, a shift right shows column 55 to 133, and a shift left 1 to 79. If more columns
available, it will be shifted to the next 79 lines to the right or left. To return to previous screen, press PF3.

Printout Display Commands

You can issue any of the following commands from the command line of the printout display screen:

Command Meaning

END Return to previous screen.

HELP Display spooling help menu.

PO Call Printer Overview.

LQ Call List Queue.

DOWN Scroll forward.

LEFT Shift display to the left.

RIGHT Shift display to the right.

141

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Customization
NSPOOL functionality is provided by the module CSPOOL which is provided in source format (see the
section Installation Considerations above).

CSPOOL references the CMSPCB macro. This macro generates the DSECT for the control block SPCB,
as well as the DSECTs for the input and output lines (inp-arg, out-arg), depending on the selected
function. For a description of the macro, see the CMSPCB copybook on the supplied source library.

The NSPOOL user interface is written in NATURAL. The NATURAL front-end programs use the data
areas for communication with CSPOOL listed in the following table:

Source Structure Length Remarks

SPWK01-A #SPWK01A OP 4 For INIT/TERM

SPCB01-A #SPCB SPCB 200

SPQI01-A #QI-WRKLINE inp-arg 80

SPQO01-A #QO-WRKLINE out-arg 200
All subfunctions except DP and
DPN

SPQO02-A
#DPO-WRKARRAY
out-arg

256 Subfunctions DP and DPN only

Parameter Areas

SPWK01-A

* TITLE........: Common Work-area for Communication with SPCB01-N
* NAME.........: SPWK01-A
* TYPE.........: A
* - -------------------------------- - ---- -----------------------
 1 #SPWK01A
 2 #OP A 4
R 2 #OP /* REDEF. BEGIN : #OP
 3 #OP-1 A 1
 3 #OP-2 A 1
 3 #OP-3 A 1
 3 #OP-4 A 1

SPCB01-A

* TITLE........: Communication-area for corresponding via CSPOOL
* NAME.........: SPCB01-A
* TYPE.........: A
* - -------------------------------- - ---- -----------------------
 1 #SPCB A 200
R 1 #SPCB /* REDEF. BEGIN : #SPCB
 2 #SP-ID B 4 /* ’SPCB’
 2 #SP-DATO B 4 /* INTERNAL
 2 #SP-DATI B 4 /* INTERNAL
 2 #SP-REQID B 4
 2 #SP-REQIDC B 4
 2 #SP-OP A 4
 2 #SP-LREQ B 2
 2 #SP-LLEN B 2

142

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

 2 #SP-DISP B 2 /* DISPL. IN LINE
 2 #SP-RETCD B 2
 2 #SP-MSGNUM B 2
 2 #SP-RLINS B 2
 2 #SP-DYNW B 4 /* INTERNAL
 2 #SP-DYNWL B 4 /* INTERNAL
 2 FILL1 A 28
 2 #SP-LNAMEL B 2
 2 #SP-LNAME A 8
 2 FILL2 A 8
 2 #SP-FORML B 2
 2 #SP-FORM A 8
 2 FILL3 A 8
 2 #SP-DESTL B 2
 2 #SP-DEST A 8
 2 FILL4 A 8
 2 #SP-USERL B 2
 2 #SP-USER A 8
 2 FILL5 A 8
 2 #SP-LDRVL B 2
 2 #SP-LDRV A 8
 2 FILL6 A 8
 2 #SP-STATL B 2
 2 #SP-STAT A 8
 2 FILL7 A 28

SPQI01-A

* TITLE........: input Work-line
* NAME.........: SPQI01-A
* TYPE.........: A
* - -------------------------------- - ---- ---------------------------
 1 #QI-WRKLINE A 80
 1 #QI-WRKLINE /* RED. BEGIN : #QI-WRKLINE
 2 #LQI-ID B 4
 2 #LQI-NAME A 8
 2 #LQI-NUM B 2
 2 #LQI-FORM A 4
 2 #LQI-STAT A 1
 2 #LQI-LINS B 2
 2 #LQI-COPIES I 2
 2 #LQI-PRIO I 2
 2 #LQI-USER A 8
 2 #LQI-LDRV A 8
 2 #LQI-DEST A 8
 2 #LQI-DATE A 8
 2 #LQI-TIME A 8
 2 #LQI-FILL1 A 15
R 1 #QI-WRKLINE /* RED. BEGIN : #QI-WRKLINE
 2 #PQI-ID B 4
 2 #PQI-NAME A 8
 2 #PQI-TID B 2
 2 #PQI-DTYPE A 8
 2 #PQI-FORM A 4
 2 #PQI-NUM B 2
 2 #PQI-STAT A 8
 2 #PQI-FILL1 A 44

143

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

SPQO01-A

* TITLE........: output Work-line
* NAME.........: SPQO01-A
* TYPE.........: A
* - -------------------------------- - ---- ---------------------------
 1 #QO-WRKLINE A 200
R 1 #QO-WRKLINE /* RED. BEGIN : #QI-WRKLINE
 2 #LQO-ID B 4
 2 #LQO-NAME A 8
 2 #LQO-NUM B 2
 2 #LQO-FORM A 4
 2 #LQO-STAT A 1
 2 #LQO-LINS B 2
 2 #LQO-COPIES I 2
 2 #LQO-PRIO I 2
 2 #LQO-USER A 8
 2 #LQO-LDRV A 8
 2 #LQO-DEST A 8
 2 #LQO-DATE A 8
 2 #LQO-TIME A 8
 2 #LQO-FILL1 A 135
R 1 #QO-WRKLINE /* RED. BEGIN : #QI-WRKLINE
 2 #PQO-ID B 4
 2 #PQO-NAME A 8
 2 #PQO-TID B 2
 2 #PQO-DTYPE A 8
 2 #PQO-FORM A 4
 2 #PQO-NUM B 2
 2 #PQO-STAT A 8
 2 #PQO-FILL1 A 164

SPQO02-A

* TITLE........: output Work-line only for display Printout
* NAME.........: SPQO02-A
* TYPE.........: A
* - -------------------------------- - ---- ---------------------------
 1 #DPO-WRKARRAY
 2 #DPO-WRKLINE A 200
R 2 #DPO-WRKLINE /* RED. BEGIN: #DPO-WRKLINE
 3 #DPO-ID B 4
 3 #DPO-NAME A 8
 3 #DPO-NUM B 2
 3 #DPO-FORM A 4
 3 #DPO-STAT A 1
 3 #DPO-LINS B 2
 3 #DPO-COPIES I 2
 3 #DPO-PRIO I 2
 3 #DPO-USER A 8
 3 #DPO-LDRV A 8
 3 #DPO-DEST A 8
 3 #DPO-DATE A 8
 3 #DPO-TIME A 8
 3 #DPO-FILL1 A 135
 2 #DPO-A56 A 56

144

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

Supported Functions and Subfunctions
The following table provides an overview of the functions and subfunctions supported by NSPOOL’s
NATURAL front-end.

Function Subfunction Meaning

PO List printer overview

OP Operate printer

PP Modify printer

LQ List printout queue

DP Display printout

MP Modify printout

General Programming Considerations

When customizing the NSPOOL front-end, the following points must be considered:

Logic in general:

 CALL ’CSPOOL’ ’INIT’ SPCB
// CALL ’CSPOOL’ SPCB inp-arg out-arg //
 CALL ’CSPOOL’ ’TERM’ SPCB

Initialization

The storage areas for the SPCB must be provided by the calling program. It is initialized by the
following call:

 CALL ’CSPOOL’ ’INIT’ SPCB

The reserved fields in the SPCB must not be modified by the user program. CSPOOL will keep
addresses of internal work areas in those fields.

Termination

To release the storage areas acquired by CSPOOL, a termination call is required:

 CALL ’CSPOOL’ ’TERM’ SPCB

For more detailed information of CALL ’CSPOOL’ (’INIT’ / ’TERM’) SPCB see frontend
program SPCB01-N.

Communication

The calling program sets the function code in the field #SP-OP in the #SPCB(SPCB-name in the
frontend programs). The keyword table in the #SPCB (#SP-NAMEL #SP-NAME etc.) can be
filled to specify search criterias. Call :

145

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

 CALL ’CSPOOL’ #SPCB #QI-WRKLINE #DPO-WRKARRAY (Names in frontend
 CALL ’CSPOOL’ #SPCB #QI-WRKLINE #QO-WRKLINE programs)

Note that inp-arg points to a copy of the out-arg of a previous (LQ/PO) request, if any
subfunction is used. The field #SP-REQID in the #SPCB must also contain the value from
(#LQO-ID/#PQO-ID).

Printer Overview

Function Meaning

PO first entry

POS same entry again / position to referred entry

PON next in queue

The following table lists the operands that must be filled in the used front-end program before calling
CSPOOL. Which operands are relevant to which functions can be seen from the matrix following the
table.

Data area
Fields in
#SPCB

Format/length Value

SPCB01-A #SP-OP A4 Operation code (PO, POS, PON)

SPCB01-A #SP-LREQ B2 1

SPCB01-A #SP-REQID B4 TIB address

SPCB01-A #SP-DESTL B2 Length of destination name or TID number

SPCB01-A #SP-DEST A8 Destination name or TID number

Matrix:

- PO, POS PO, POS PO, POS, PON

#SP-OP (1) in (1) in (1) in

#SP-LREQ (1) in (1) in (1) in

#SP-REQID (2) in - -

#SP-DESTL - (3) in (3) in

#SP-DEST - (2) in (2) in

Key:

146

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

(1) Required.

(2) Optional.

(3) If destination-name (#SP-DEST) is filled, the length of
destination-name is required in #SP-DESTL.

in Input field

For more detailed information, see the source of front-end program SPPQ01-S.

Operate Printer

Operate Printer (OP) is a subfunction of the Printer Overview function and consists of the following:

OPM mount printer format

OPS start printer

OPR reset printer

OPH halt printer

The following table lists the operands that must be filled in the used front-end program before calling
CSPOOL. Which operands are relevant to which functions can be seen from the matrix following the
table.

Data area
Fields in
#SPCB

Format/length Value

SPCB01-A #SP-OP A4 Operation code (OPM, OPS, OPR, OPH)

SPCB01-A #SP-LREQ B2 1

SPCB01-A #SP-REQID B4 TIB address (#PQD-ID)

SPQI01-A #QI-WRKLINE A80 Out-arg (#QO-WRKLINE)

SPCI01-A #PQI-FORM A4 Printer format

Matrix:

 OPM OPS OPR OPN

#SP-OP (1) in (1) in (1) in (1) in

#SP-LREQ (1) in (1) in (1) in (1) in

#SP-REQID (1) in (1) in (1) in (1) in

#QI-WRKLINE (1) in (1) in (1) in (1) in

#PQI-FORM (1) in - - -

147

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Key:

(1) Required.

in Input field

Subfunction OP is only possible after a successful function PO. For more detailed information, see the
source of front-end program SPOP01-P.

Position Current Printout

This subfunction branches to the function List Queue Overview. For execution, #SP-DESTL and
#SP-DEST are filled. Subfunction Position Current Printout can then be used as described below.

Position Current Printout is a subfunction of List Queue Overview and consists of the following:

PPT position current printout top

PPB position current printout bottom

PPA position current printout absolute

PPR position current printout relative

The following table lists the operands that must be filled in the used front-end program before calling
CSPOOL. Which operands are relevant to which functions can be seen from the matrix following the
table.

Data
area

Fields in
#SPCB

Format/length Value

SPCB01-A #SP-OP A4 Operation code (PPT, PPB, PPA, PPR)

SPCB01-A #SP-LREQ B2
With PPA and PPR, number of pages requested.
Otherwise, 1

SPCB01-A #SP-REQID B4 TIB address (#PQD-ID)

SPQI01-A #QI-WRKLINE A80 Out-arg (#QO-WRKLINE)

Matrix:

 PPT PPB PPA PPR

#SP-OP (1) in (1) in (1) in (1) in

#SP-LREQ (1) in (1) in (1) in (1) in

#SP-REQID (1) in (1) in (1) in (1) in

#QI-WRKLINE (1) in (1) in (1) in (1) in

148

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

Key:

(1) Required.

in Input field

Subfunction PP is only possible after a successful PO and LQ request. For more detailed information, see
source of front-end program SPPP01-S.

EXCEPTION!

The following two subfunctions are simulated.

OPC cancel current printout

OPF flush all queue entries

With these subfunctions, the function List Queue Overview is branched to. For execution, #SP-DESTL
and #SP-DEST are filled. Subfunction Modify Queue entry purge (MQP) can then be used as described
below.

List Queue Overview

Function Meaning

LQ first entry

LQS same entry again / position to referred entry

LQN next in queue

The following table lists the operands that must be filled in the used front-end program before calling
CSPOOL. Which operands are relevant to which functions can be seen from the matrix following the
table.

149

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Data area
Fields in
#SPCB

Format/length Value

SPCB01-A #SP-OP A4 Operation code (LQ, LQS, LQN)

SPCB01-A #SP-LREQ B2 1

SPCB01-A #SP-REQID B4 MCQ address

SPCB01-A #SP-LNAMEL B2 Length of printout name

SPCB01-A #SP-LNAME A8 Printout name

SPCB01-A #SP-FORML B2 Length of format name

SPCB01-A #SP-FORM A8 Format name

SPCB01-A #SP-DESTL B2 Length of destination name

SPCB01-A #SP-DEST A8 Destination name

SPCB01-A #SP-USERL B2 Length of user ID

SPCB01-A #SP-USER A8 User ID

SPCB01-A #SP-LDRVL B2 Length of logical driver name

SPCB01-A #SP-LDRV A8 Logical driver name

SPCB01-A #SP-STATL B2 Length of status name

SPCB01-A #SP-STAT A8 Status name

Matrix:

150

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

 LQ, LQS LQ, LQS, LQN LQ, LQS, LQN

#SP-OP (1) in (1) in (1) in

#SP-LREQ (1) in (1) in (1) in

#SP-REQID (2) in - -

#SP-LNAMEL - (3) in -

#SP-LNAMEL - (2) in -

#SP-FORML - (3) in -

#SP-FORM - (2) in -

#SP-DESTL - (5) in -

#SP-DEST - (2) in -

#SP-USERL - (6) in -

#SP-USER - (2) in -

#SP-LDRVL - (7) in -

#SP-LDRV - (2) in -

#SP-STATL - (8) in -

#SP-STAT - (2) in -

Key:

in Input field

(1) Required.

(2) Optional.

(3) If printout-name (#SP-LNAME) is filled, the length of the printout
name is required in #SP-LNAMEL.

(4) If format-name (#SP-FORM) is filled, the length of the format name is
required in #SP-FORML.

(5) If destination-name (#SP-DEST) is filled, the length of the destination
name is required in #SP-DESTL.

(6) If user-id (#SP-USER) is filled, the length of the user ID is required in
#SP-USERL.

(7) If logical driver-name (#SP-LDRV) is filled, the length of the logical
driver-name is required in #SP-LDRVL.

(8) If status-name (#SP-STAT) is filled, the length of the status name is
required in #SP-STATL.

For more detailed information, see source of frontend program SPLQ01-N.

151

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Printout Display

Printout Display is a subfunction of List Queue Overview and consists of the following:

DP first entry

DPN next line

The following table lists the operands that must be filled in the used front-end program before calling
CSPOOL. Which operands are relevant to which functions can be seen from the matrix following the
table.

Data area
Fields in
#SPCB

Format/length Value

SPCB01-A #SP-OP A4 Operation code (DP, DPN)

SPCB01-A #SP-LREQ B2 1

SPCB01-A #SP-REQID B4 MCQ address (#LQO-ID)

SPCB01-A #SP-LLEN B2 Length of output line (max. 256)

SPQI01-A #QI-WRKLINE A80 Out-arg (#QO-WRKLINE)

Matrix:

- DP DPN

#SP-OP (1) in (1) in

#SP-LREQ (1) in (1) in

#SP-REQID (1) in -

#SP-LLEN (1) in -

#QI-WRKLINE (1) in -

Key:

in Input field

(1) Required.

Subfunction DP is only possible after a successful LQ request. For more detailed information, see source
of front-end program SPDP01-P.

Modify Queue Entry

Modify Queue Entry is a subfunction of List Queue Overview and consists of the following:

152

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

MQU modify queue entry update

MQP purge queue entry

MQC copy queue entry

MQM move queue entry

The following table lists the operands that must be filled in the used front-end program before calling
CSPOOL. Which operands are relevant to which functions can be seen from the matrix following the
table.

Data area
Fields in
#SPCB

Format/length Value

SPCB01-A #SP-OP A4
Operation code (MQU, MQP, MQC,
MQM)

SPCB01-A #SP-LREQ B2 1

SPCB01-A #SP-REQID B4 MCQ address (#LQO-ID)

SPQI01-A #QI-WRKLINE A80 Out-arg (#QO-WRKLINE)

SPQI01-A #LQI-FORM A4 Printout format

SPQI01-A #LQI-STAT A1 Printout status

SPQI01-A #LQI-COPIES B2 Number of printout copies

SPQI01-A #LQI-PRIO B2 Printout priority

SPQI01-A #LQI-LDRV A8 Printout logical driver

SPQI01-A #LQI-DEST A8 Printout destination

Matrix:

- MQU MQP MQC MQM

#SP-OP (1) in (1) in (1) in (1) in

#SP-LREQ (1) in (1) in (1) in (1) in

#SP-REQID (1) in (1) in (1) in (1) in

#QI-WRKLINE (1) in (1) in (1) in (1) in

#LQI-FORM (2) in - (2) in (2) in

#LQI-STAT (2) in - (2) in (2) in

#LQI-COPIES (2) in - (2) in (2) in

#LQI-PRIO (2) in - (2) in (2) in

#LQI-LDRV (2) in - (2) in (2) in

#LQI-DEST - - (1) in (1) in

153

NSPOOL - Printout Spooling With Natural Front-EndCom-plete 6.2.1 Application Programming

Key:

(1) Required.

(2) Optional.

in Input field.

Subfunction MQ is only possible after a successful LQ request. For more detailed information, see source
of front-end program SPMQ01-P.

154

Com-plete 6.2.1 Application ProgrammingNSPOOL - Printout Spooling With Natural Front-End

Miscellaneous Functions and Function Tables
This part of the Application Programmer’s documentation describes some miscellaneous API functions,
and provides more technical information concerning the values you have to use to customize API
functions.

This information is organized under the following headings:

Miscellaneous Functions

Mapping Request Control Block (MRCB)

Mrcb Exception Codes

Field Control Table (FCT)

Field Descriptor Codes

Terminal Control Codes

Request Parameter List

Captur Record Header

Message Switching Control Block (MESGCB)

Printout Spool Control Block (PSCB)

Getchr Information Table

Com-plete Functions For Batch And Online Programs

Terminal Device Type Codes

155

Miscellaneous Functions and Function TablesCom-plete 6.2.1 Application Programming

Miscellaneous Functions
The miscellaneous functions of Com-plete enable the application program to utilize a wide range of
features. The specific functions available are described in the following table. All functions can be used in
the same application program, either repeatedly or singly.

Function Description

ABEND
Function

Abnormally terminate with a specific termination code at a specific
location within the program. A dump entry is automatically created in
the Com-plete online dump file, thus enhancing program testing by
providing a program image at the time of termination.

ABEXIT
Function

Set up routine to get control when a program abends.

CMPOST
Function

Signal completion of an event.

CMWAIT
Function

Wait on up to to eight events.

COMSTOR
Functions

Obtain, modify, and release storage outside of the application thread
area.

DATE Function Obtain the current date in either Julian or Gregorian format.

EOJ Function Normally terminate an application program.

FREEMAIN
Function

Free storage in a thread.

GETCHR
Function

Interrogate information pertaining to the terminal in use and/or the
terminal user. This information can subsequently be used to establish
security for the application program or to determine various logic
paths to be followed based upon desired criteria.

GETMAIN
Function

Acquire storage in a thread.

GETSTOR
Function

Acquire storage in a thread, above the 16 MB line, if available.

MODIFY
Function

Modify the program environment.

RJE Function Submit job streams to the batch environment for scheduling of
execution.

ROLEVT
Function

Rollout of the thread until an event controlled by a companion JOB (or
task) occurs.

ROLOUT
Function

Force a scheduled rollout operation for the thread in which it is
executing. The rollout operation can be used to free the thread
resource.

156

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Function Description

SETEID
Function

Recognize the entry of the desired Program Attention keys or Program
Function keys. Since Com-plete normally recognizes entry of the keys,
the application program will normally not be notified of the use. The
SETEID function is used to mask off from Com-plete the desired
Program Attention or Program Function keys.

SNAP Function Write a thread dump without abending.

TESTAT
Function

Test for a desired program interrupt condition caused by pressing a
Program Attention key. This function is normally used in conjunction
with the ROLOUT function or the WRT function in order to enable the
application program to terminate a timed rollout operation.

TIME Function Obtain information about timing intervals.

ABEND Function
The ABEND function initiates Com-plete abnormal termination processing for an application program. A
hex dump of the program storage area is produced. The program does not regain control.

An abend code can be specified by using the optional abcodeargument. This code is displayed at the
terminal for online programs, and is included in the printout for batch programs. The largest number that
can be given for the abend code is 9999. If the number is omitted or is larger than 9999, Com-plete will
initialize the abend code to 255.

The ABEND function is useful when debugging an application program. Several ABEND CALL
statements can be coded, each with an abcode value, to enable tracing program logic by halting execution
at various node points. The abcode returned to the screen or printout data set facilitates the following of
the execution logic of the program, and the dump-generated aids in identifying and correcting errors.

Format

The format for using the ABEND function is:

ABEND [(abcode)]

abcode Optional.
Default: 255 The user-supplied abend termination code. The
largest value permitted is 9999. If the abcode is omitted or is
larger than 9999, Com-plete defaults to 255.

Return Codes

No return codes are provided by the ABEND function because control is not returned to the
application program.

157

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

ABEXIT Function
Note:
This function can only be used with programs written in Assembler.

The ABEXIT function enables an application program to set up a routine which will get control in the
event of the program abending. This can be used to clean up reserved resources, to provide an application
specific message to users of the application and/or to enable the application to continue processing if
desired.

The exit routine will receive control in the same context as it was set up. This means that the registers are
saved at the point where the exit is set up and the user exit given control with these same registers if an
abend occurs. If the ABEXIT function was issued in 31 bit mode, or the exit is a 31 bit address, the exit
will get control in 31 bit mode. It will get control in the key in which the thread is in at the time of the
abend.

If another abend occurs while the exit has control, the exit will not get control a second time and the
application program will be abended. An exit is deemed to be in control until the point that it successfully
issues another API request.

An abend exit can also be used as an end-of-job exit routine. If you specify the EOJ parameter on the
ABEXIT function call, then this abend exit routine will also receive control when Com-plete terminates
the application normally. To distinguish between an abend call and an end-of-job call, the exit routine can
analyze the contents field ABXDCODE (abend code), which will contain zero at an end-of-job call.

The format for the ABEXIT function is:

ABEXIT (retcode , exit address , ABXD [,eoj])

retcode A fullword containing the return code after Com-plete has processed
the appropriate function.

exit address This is the address of the exit routine to get control in the event of an
abend. If this field is zero, any previously set abend exit routine will be
reset.

ABXD This is the address of the user supplied abend exit data area as mapped
by the copybook CCABXD. This parameter is required if the request is
to set an abend exit. Refer to the copybook itself for details of the
contents which are filled out when an abend occurs. This parameter
must be supplied for both set and reset requests.

Return Codes

0 Abend exit set successfully set or reset

4 Exit replaced a previously set exit for a set request. No previous
exit set for a reset request

8 Insufficient thread storage to process request

12 Invalid parameters passed to the ABEXIT function

158

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Abends

Abends may occur if the exit address and/or the ABXD address are invalid.

CMPOST Function
The CMPOST function can be used to signal that an event has completed. The event in question is
indicated via an Event Control Block (ECB) which must previously have been or is about to be the object
of a CMWAIT or ROLEVT request for the application program waiting on the event to complete.

A program catalogued PV may post an ECB anywhere in the Com-plete address space. A program
catalogued non PV may only post an ECB which is within a previously allocated COMSTOR area.

The format for the CMPOST function is:

CMPOST (Return code , ECB , post code)

retcode A fullword containing the return code after Com-plete has processed
the appropriate function.

ECB This is the address of the Event Control Block (ECB) to be posted
active. Note that for the post to have any effect, another application
must be waiting on the ECB in question.

post code This is the address of an optional fullword, the contents of which will
be placed in the ECB when it has been posted active. This can be
useful to determine what posted the ECB active if it can be posted
from different parts of the system.

Return Codes

0 ECB posted successfully

4 Invalid parameter list supplied. The ECB in the list does not exist
or is not fullword aligned

8 No COMSTOR available

12 ECB provided by non PV user was not in a COMSTOR area

Abends

There are no abends expected with the normal usage of this function.

CMWAIT Function
The CMWAIT function may be used to wait on up to a maximum of eight events. This call provides the
Com-plete dispatching nucleus with the ability to service other users while the current application waits
for what should normally be a short term event. As the program cannot be rolled out over this call, the
thread will be unavailable to other users. Therefore, if it is expected that the event will take longer, the
ROLEVT function should be used instead.

159

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

The format for the CMWAIT function is:

CMWAIT (retcode , ECB1 , ECB2, ECB8)

retcode A fullword containing the return code after Com-plete has processed
the appropriate function.

ECB1 to ECB8 The address of the Event Control Block(s) upon which the program
would like to wait. Programs which are catalogued PV may wait on up
to 8 ECBs which must exist somewhere in the Com-plete address
space.
Programs which are catalogued non PV may only wait on 1 ECB and
this ECB must be within a previously allocated COMSTOR area. Only
one ECB may exist in any one COMSTOR area.

Return Codes

0 One or more of the events has been posted complete

4 Invalid parameter list supplied One of the ECBs in the list does not exist or is
not fullword aligned The same ECB address was supplied twice in the list. For
OS systems, one of the ECBs had the wait bit on. A non PV user supplied more
than one ECB for the request.

8 No COMSTOR available.

12 ECB provided by non PV user was not in a COMSTOR area.

16 The ECB in COMSTOR is already being waited upon

Abends

There are no abends expected with the normal usage of this function.

COMSTOR Functions
The Common Storage Control (CSC) functions provide a facility that allows the application program to
obtain, modify, and release storage outside of the application thread area. This facility allows a Com-plete
application program to interact with another application program by sharing "common" storage. The
storage is not located within the thread, but is located outside the thread in an area that is managed by
Com-plete.

Com-plete’s CSC routines use a control block to communicate with the application program. Information
about the request, such as function type (for example, GEN, GET), is placed in the control block before
invoking the COMSTOR routine. Com-plete returns the status of the call and other information to the
application program in the control block.

Several function types are available to the application program to maintain this storage. They include:

GEN - obtains and initializes storage;

160

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

FREE - frees the storage;

PUT - modifies part or all of the storage by moving data into it from the application program;

GET - "reads" the storage by moving part or all of it into the application program.

GEN is used to obtain working storage outside of the thread. Specifically, the storage is not rolled out with
the thread when the application program is rolled out; however, the storage is available to other
application programs while the program that obtained and initialized it is rolled out. The storage is
obtained from a special buffer pool managed by Com-plete and cannot be modified directly.

The area parameter is used to initialize the storage obtained by the GEN call. If no area parameter is
supplied, the area is not initialized.

Note that the storage obtained by a COMSTOR GEN function call is considered "non-accountable", that
is, the storage is controlled by the application and can only be freed by an explicit call from an application
program. Synchronization of the access to the storage is left up to the application programs involved.

FREE is used to free the storage previously obtained by GEN. After control is returned from the FREE
function call, the storage is no longer available to any application programs. The storage ID (see the
CSCID field explained in the table below) can be re-used to obtain and initialize a new piece of storage.

PUT is used to modify the storage that was obtained with GEN. The entire area, or just a part of it, can be
modified. Thecontrolblock parameter specifies the offset and length of the data in the GENed area that is
to be modified. The area parameter is the name of a field containing data to be used for the modification.

GET is used to "read" the storage previously obtained with GEN and/or modified by PUT. The entire
GENed area, or just a part of it, can be moved into the application. The controlblock parameter specifies
the offset and length of the data in the GENed area to be moved into the application program. The area
parameter is the name of a field that is the target for the data to be moved.

Format

The format for using the COMSTOR function is:

COMSTOR (retcode, controlblock , area)

retcode Required.
A fullword where Com-plete places the return code upon completion
of the operation.

control-block Required.
The label of a data area containing the common storage control block.
Refer to the CSC control block table below. The desired function is
indicated within this control block.

area The label of a data area, the usage of which is dependent upon the
specified function.Optional.

Return Codes

161

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

After each call, the return code must be examined. All return codes are posted in the first
parameter, as follows:

0 The function completed normally.

4 The function did not complete. The control block address is
invalid.

8 The function did not complete. Refer to the CSCFBK field in the
control block for the feedback code.

Feedback Codes

If Com-plete finds the location of the CSC control block to be valid but discovers some other
error, the application program receives return code 8 and the CSCFBK field contains one of the
following feedback codes:

4 The storage already exists (GEN), or the storage does not exist
(FREE, PUT, GET).

8 The amount of storage requested is not available (GEN).

12 Control storage is unavailable. Too many GEN requests are
outstanding. Notify the system programmer.

16 INVALID function.

20 AREA PARM missing.

24 AREA length (CSCLEN) invalid.

28 DATA offset (CSCOFF) invalid.

32 The storage is held by ROLEVT and cannot be changed (FREE,
PUT).

Abends

There are no abends associated with the Common Storage Control functions.

CSC Control Block

Com-plete Common Storage Control uses a control block to pass information back and forth between
itself and the application program. The control block is the second parameter in each call to the
COMSTOR function, and is formatted as shown in the following table:

162

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Name Length Offset Description

CSCNAME 4 0 Character; must be CSCB

CSCFUNC 4 4
Character; function - must be GEN, GET, PUT, or
FREE

CSCID 8 8
Character; storage identifier - used to uniquely
identify (i.e., "name") the storage

CSCLEN 4 16
Signed binary; data length - the length of the data to
be moved to or from the GENed area.

CSCOFF 4 20
Signed binary; offset to data - the offset in the
GENed area to which, or from which, the data is to
be moved.

CSCAREA 4 24

Storage address; address of the GENed area in
Com-plete storage. The storage pointed to by this
address should not be directly referenced; it is in
protected storage. If an ECB is built as the first
word of the GENed area, the data name of
CSCAREA can be used as the ECB parameter of a
Com-plete ROLEVT function.

CSCRC 2 28 Signed binary; return code.

CSCFBK 2 30
Signed binary; feedback code - indicates the status
of the COMSTOR call. See feedback codes in
previous section for valid values.

DATE Function
The DATE function enables the application to obtain one of the following:

Gregorian date: mmddyy

Julian date: yyddd

The current date can optionally be obtained using the standard COBOL reserved word CURRENT-DATE.

DATE indicates that the date is to be returned in Gregorian format.

DATEJ indicates that the date is to be returned in Julian format.

Format

The format for using the DATE function is:

DATE[J] (retcode, area)

163

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

area Required.
A four-byte area in the working storage area of the application
program where the date will be placed.

The date can be returned in either Gregorian or Julian format. Regardless of the format chosen,
the date is returned in a four-byte area identified by the area argument. The format of the data
returned in the four-byte field is:

Gregorian Format: X’0mmddyyF’ with Applymod 25 OFF
X’cmmddyyF’ with Applymod 25 ON

The first character contains either a leading half-byte of zeros, or the century indicator "c". The
characters are:

c = century indicator (c=0=1900; c=1=2000; etc.)
mm = month indicator (01 to 12)
dd = date indicator (01 to 31)
yy = year indicator (00 to 99)

Note that the Gregorian format illustrated above differs from the results returned by the MCALL
DATE function for Assembler language programming.

Julian Format: X’00yydddF’ with Applymod 25 OFF
X’0cyydddF’ with Applymod 25 ON

The last character contains the hexadecimal character F to ensure a valid numerical sign. The
remaining characters are:

c = century indicator (c=0=1900; c=1=2000; etc.)
yy = year indicator (00 to 99)
ddd = day indicator (001 to 366)

Return Codes

A return code of 0 is issued upon normal completion of the DATE function.

Abends

An abnormal termination may occur during execution of the DATE function. A possible cause
is that an invalid area argument was specified.

EOJ Function
The EOJ function is used to initiate Com-plete end-of-job processing for an online or batch program.

Note:
If a batch program terminates without issuing an EOJ function, the session not terminated by the target
Com-plete.

164

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Either the EOJ or the WRTD function of Com-plete can be used to terminate the program normally. The
WRTD function differs from the EOJ function in that it permits the application program to issue a
termination message.

Format

The format for using the EOJ function is:

EOJ

No arguments are provided or Required.

Return Codes

No return codes are given by the EOJ function. Since end-of-job processing is invoked, the user
program will not regain control.

Abends

In case of an abnormal termination, consult the system programmer.

FREEMAIN Function
The FREEMAIN function is used to free storage from the thread in which the application is running. Note
that the storage to be freed must have been acquired by a previous GETMAIN or GETSTOR.

The length and area values must always be double word multiples. For a FREEMAIN request, Com-plete
rounds the length value "UP" and sends a return code 12 to the user program if the area address is not
aligned.

Note that the length and address values specified should be those returned by a previous GETMAIN or
GETSTOR.

Format

The format for using the FREEMAIN function is:

FREEMAIN (retcode, length, area)

retcode Required.
Specifies a fullword where Com-plete will place the return code
upon completion of the operation.

length Required.
Specifies a fullword containing the length of the area to be freed.

area Required.
Specifies a fullword containing the address of the area to be
freed.

Return Codes

165

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

The contents of Register 15 should be checked for the following conditions:

0 No errors.

8 The request space was not previously acquired.

12 An invalid request or an invalid FQE was found.

Abends

There are no abends associated with the FREEMAIN function.

GETCHR Function
The GETCHR function enables an online or batch application program to obtain information about the
terminal environment in which it is executing or information about the terminal environment for a
specified terminal. The information obtained is returned in the form of a table of information referred to as
the GETCHR information table. Note that the GETCHR information table should be defined in the
working storage area of the application program.

Three arguments are provided by the GETCHR function. The information obtained is placed in a working
storage area in the application program indicated by the required area argument. The information supplied
is arranged into separate fields, each of which has a length of one to eight bytes.

The optional length argument is used to specify the number of bytes to be returned to the program. If the
length argument is not used, Com-plete returns only the first sixteen bytes of information. If specified, the
length argument value must end on a GETCHR field boundary.

The optional tid argument enables specification of the terminal to which the GETCHR information
pertains. If the TID is omitted, the GETCHR function provides information only for the terminal in use.

The format and content of the GETCHR record are illustrated inGetchr Information Table.

Format

The format for using the GETCHR function is:

GETCHR (retcode,area[,length][,tid])

166

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

area Required.
The GETCHR information table area where Com-plete is to place
terminal environment information.

length Optional.
Default: If the length is omitted, 16 bytes of information will be
provided.A binary halfword containing the number of bytes of
terminal environment information to be returned. The contents of
length must be a number that ends on a GETCHR field boundary.
The length can contain a maximum value of +148.

tid Optional.
Default: If omitted, the environment information returned will be
for the TID of the terminal in use. A binary halfword containing
the Terminal Identification number (TID) or the Line
Identification number (LID) of the terminal or line group about
which environment information is being requested.

Return Codes

The following return codes are issued by the GETCHR function:

0 The information returned was for a TID.

4 The information returned was for a LID.

8 The TID/LID number specified exceeds the maximum defined in
the TIBTAB.

12 The TID/LID number specified does not exist.

Abends

An abnormal termination may occur during execution of the GETCHR function. Possible causes
include:

An invalid argument was specified on the GETCHR call;

A protection exception occurred.

GETMAIN Function
The GETMAIN function is used to acquire storage from the thread in which the application is running.
This storage can be used for any function desired by the program.

The amount of storage requested is acquired only if that amount of storage is available within the thread as
a contiguous segment. Note that there is no protection from storage overruns within the thread.

167

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

When a request is made, the largest contiguous segment available that is greater than or equal to the
minimum and less than or equal to the maximum will be returned.

Note that requested lengths must be in double word segments, or Com-plete will round up length requests
to double word multiples. This action on the part of Com-plete is consistent with that of the FREEMAIN
function as well, and prevents storage fragmentation to some degree.

Format

The format for using the GETMAIN function is:

GETMAIN (retcode,minmax,addrlen)

retcode Required.
Specifies a fullword where Com-plete places the return code upon
completion of the operation.

minmax Required.
Specifies the address of two binary fullwords. The first of these
words contains the minimum amount of storage that will satisfy
the request. The second specifies the maximum amount of storage
needed by the request.

addrlen Required.
Specifies the address of two binary fullwords. The address of the
acquired storage is placed into the first word. The length of the
acquired storage is placed into the second word.

Return Codes

The following return codes are issued by the GETMAIN function:

0 No errors.

4 The requested space was not available.

12 An invalid request or an invalid FQE was found.

Abends

There are no abends associated with the GETMAIN function.

GETSTOR Function
The GETSTOR function is used to acquire storage from the thread used by the application. In contrast to
the GETMAIN function, GETSTOR can be used to allow storage to be obtained from above the 16 MB
line, if available.

The length requested must be a multiple of eight, otherwise Com-plete will round it up.

Storage acquired using the GETSTOR function can be released using the FREEMAIN function.

168

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Format

The format for using the GETSTOR function is:

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

length Required.
A fullword containing the length of the storage area to be
acquired.

address Required.
A fullword where Com-plete places the address of the acquired
storage.

location Optional.
Default: If no location is specified, storage is acquired from
below the 16 MB line.A three-byte character field indicating
where to acquire storage from: BEL indicates storage to be
acquired from below the 16 MB line, ANY indicates storage to be
acquired from any location above or below the 16 MB line.

Return codes

0 Successful completion.

4 The amount of space requested was not available.

12 An invalid request or an invalid FQE was found.

MODIFY Function
The MODIFY function allows an application program to change several of the processing characteristics
associated with it and with the terminal. For example, the MODIFY function could be used by an
application to change the definition of its terminal from upper-case to lower-case.

Format

The format for using the MODIFY function is:

MODIFY (retcode,function[,option])

169

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

function Required.
A four-character field containing the code indicating the function
to be performed. Valid function codes are described in the
function code table below.Note that codes less than four
characters are left-justified and padded with blanks to the right.

option Optional.
An additional parameter that can be used by certain functions.
The format of this parameter is described in the function code
table below.

Return Codes

The following return codes are issued by the MODIFY function:

0 The function completed normally.

4 The request could not be completed.

8 The request is invalid.

Abends

There are no abends associated with the MODIFY function.

Function Codes

The following table defines the valid MODIFY function codes and the actions associated with
each. Also described are the optional parameters, if any, associated with each function code.

Code Function Optional Parameter

UP Set the terminal into upper
case mode

None.

LOW Set the terminal into lower
case mode

None.

HC Change the
screen-to-hardcopy definition

An eight-character name of the new
screen-to-hardcopy device, which must
be defined in TIBTAB. If it is omitted,
screen-to-hardcopy is reset.

REL Set the program to be
relocatable.

A halfword mask defining which
registers are to be relocated with the
program.

NREL Set the program to be
non-relocatable

None.

170

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Code Function Optional Parameter

ALT Set the terminal to use
alternate screen size.

None.

NALT Set the terminal to use normal
screen size.

None.

TCS Set the program protection
key to Com-plete’s protection
key.

None.

 This function can be used
only from PV and/or resident
programs.

-

THRD Set the program protection
key to the normal user
protection key.

None.

 This function can be used
only from PV and/or resident
programs.

-

PRTY Set the transaction priority. A fullword containing a new priority
value between 0 and 3.

EXTD Set the terminal to use
extended data stream support.

None.

NXTD Set the terminal to not use
extended data stream suppor

None.

COMP Set data stream compression
for the terminal on.

None.

NCMP Set data stream compression
for the terminal off.

None.

NAME Set the stack name for the
current level to the supplied
value.

An eight character field.

KANO Set KANJI mode off. None.

KANI Set KANJI mode to type
IBM.

None.

KANF Set KANJI mode to type
FACOM.

None.

KANH Set KANJI mode to type
HITACHI.

None.

171

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

RJE Function
The RJE function enables an online or batch application program to submit jobs to the operating system
for scheduling and execution in the batch environment. Card input via a batch job input stream is
simulated through use of an internal pseudo card reader defined to Com-plete.

Job stream data to be submitted is stored in the working storage area of the application program. When the
job stream data is submitted with the RJE function, the amount of data must be specified in bytes. The
number specified must be a multiple of 80.

The application program using the RJE function may have a need to submit more job stream data than can
contiguously be stored in the working storage area of the application program at any one time.
Consequently, submission of the job stream data might require more than one use of the RJE function to,
in effect, submit portions of the job stream data. This feature is provided for by the RJE function.

Format

The format for using the RJE function is:

RJE (retcode,area,length[,options])

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

area Required.
A buffer area in the working storage area of the application
program that contains the job stream data to be submitted.

length Required.
A binary halfword containing the length of the job stream data, in
bytes, to be submitted. This value must be a multiple of 80.

options Optional.
A binary halfword containing the processing options to be
invoked at the time of RJE submission.
"X8000" indicates that the internal reader will be held for
additional RJE submission by the currently executing program
after execution of the RJE function. The absence of this argument
indicates that the reader is to be made available immediately for
use by other programs.
If the application terminates, Com-plete will free the reader (if
held). However, the reader is not freed over a screen I/O or
rollout function. This may cause operational problems, so please
be cautious about using the HOLD option.

Return Codes

The following return codes are issued by the RJE function:

172

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

0 The job stream data was successfully submitted.

4 The job stream was not successfully submitted. In this situation,
the pseudo card reader defined to Com-plete is in use by another
application program. The application program receiving a return
code value of 4 should normally reissue the RJE request.
Continued receipt of a return code 4 can indicate a potential
operational problem, notify the system programmer.

8 The RJE functions have been disabled.

12 RJE submit aborted by user exit.

Abends

An abnormal termination may occur during execution of the RJE function. Possible causes
include:

An invalid area or length argument was specified;

The length argument is not a multiple of 80.

ROLEVT Function
The Roll-for-Event (ROLEVT) function provides a facility that allows the application program to rollout
of the thread until an event controlled by a companion JOB (or task) occurs. This facility allows a
Com-plete application program to interact with another JOB running in the same machine and provides a
synchronization mechanism between the Com-plete program and the companion JOB.

Synchronization of the two tasks is controlled through an Event Control Block (ECB), which is waited on
by the ROLEVT function, and which must be posted by the companion task to signal a synchronization.
ROLEVT uses a standard operating system WAIT macro to await the event occurrence, and relies on the
companion task to issue the operating system POST macro to signal the event occurrence.

The ROLEVT function can be used by any online Com-plete application program, privileged or
non-privileged. However, a distinction is made by the ROLEVT function between privileged and
non-privileged programs when validating the ECB argument.

For non-privileged programs, the area pointed to by the ECB argument must be located within storage
acquired via the Com-plete COMSTOR function. This area is located within the Com-plete
partition/address space, but outside of the Com-plete threads. For privileged programs, no address
validation is performed.

If the ROLEVT request is rejected, the program is not rolled out and remains in the thread. However, once
rolled out as a result of the ROLEVT function, the application remains rolled out until the companion task
POST’s caller’s ECB occurs. The only exception to this is if the application program is cancelled by the
computer operator with the operator command CANCEL. When this happens, the application program is
rolled back into the thread and terminated abnormally.

Format

173

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

The format for using the ROLEVT function is:

ROLEVT (retcode,CB)

The argument is:

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

CB Specifies the address of a control block to be used to pass
information back and forth between the application program and
Com-plete. The first word of the control block contains the
address of an ECB. The ECB pointed to is used by Com-plete to
wait for the event occurrence to be signalled by a POST from a
companion task. This area is also used by Com-plete to pass back
the status of the ROLEVT function.The area pointed to by this
argument is validated by the ROLEVT function, according to the
rules established earlier in this section.

Return Codes

The return code parameter or the first word of the control block must be checked for the
following conditional values:

0 ROLEVT request accepted. The ROLOUT and subsequent
ROLIN has been completed.

4 Invalid control block address specified.

8 COMSTOR does not exist (non-privileged programs).

12 ECB address is not within an area acquired with the Com-plete
COMSTOR function (non-privileged program).

16 The specified ECB has already been waited on.

Abends

The only abnormal termination associated with the ROLEVT functions is one indicating that the
parameter list is invalid.

ROLOUT Function
The ROLOUT function enables an application program to relinquish the use of the thread by requesting
that a thread rollout occur. Thread rollouts are required to enable the sharing of thread resources by more
than one application program.

When Com-plete is initialized, a maximum CPU time value is assigned to each thread. If an application
program uses this maximum value before a rollout occurs, the program terminated abnormally.

174

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Thread rollout normally occurs when an application program uses a terminal I/O function (e.g., WRTC);
however, if an application program performs multiple compute-bound or I/O-bound functions prior to
using a terminal I/O function, it may exceed the time allotted and abnormally terminate. Use of the
ROLOUT function enables the application program to avoid abnormal termination by forcing the thread
rollout to occur.

When a thread rollout occurs, the program in the thread is placed at the end of the Com-plete ready-to-run
queue, and the application program at the top of the queue is dispatched for execution. If the ready-to-run
queue is empty (no program is awaiting execution), a rollout does not occur. Note that this is true even if
the ROLOUT function is specifically requested.

The application program can optionally choose to request that the thread rollout occur and that (after a
specified number of seconds) the application program be placed at the bottom of the Com-plete
ready-to-run queue to await dispatching for execution. This is called a timed rollout request.

Format

The format for using the ROLOUT function is:

ROLOUT [(time)]

time Optional.
Default: 0A binary halfword containing the number of seconds
after which the application program is placed at the bottom of the
Com-plete ready-to-run queue to await dispatching for execution.

Return Codes

There are no return codes associated with the ROLOUT function.

Abends

There are no abnormal termination situations that can be directly associated with the ROLOUT
function.

SETEID Function
The SETEID function is used to enable an application program to recognize the entry of a Program
Attention (PA) key or a Program Function (PF) key by the terminal user.

Some PA and/or PF keys can be reserved for Com-plete functions via system parameters or by user profile
definition.

If the PA/PF key entered is allocated to one of the Com-plete functions SUSPEND, HARDCOPY or
JUMP then this key is not passed to the application and the appropriate Com-plete function is performed.

If the PA2 key is allocated to the Com-plete HARDCOPY function, then this key is passed to the
application if the system parameter definition was OVERRIDE and the application requested that the PA2
key be passed.

175

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

The application program can assign a function of its own to one or more PA or PF keys. In order to
facilitate recognition of one of these keys, the keys must be masked off from Com-plete. This is
accomplished by using the SETEID function. Once the function keys are masked off from Com-plete, the
application program must issue a terminal device-dependent read and examine the first character in the
input buffer to determine which function key, if any, was pressed.

An application program can issue more than one SETEID function.

Format

The format for using the SETEID function is:

SETEID (retcode,eid)

176

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

retcode Required.
A fullword where Com-plete places the return code upon completion of the
operation.

eid Required.
A binary halfword field. Each bit position within the field represents a PAn
key or a PFn key.

If a bit position is 1, the associated PA/PF key entry will be returned to the
application program. Note that the adding together of values associated
with a key produces an eid value necessary for masking those keys.

Use the following table to determine which bit affects the appropriate key:

Key Bit Eid

PA1 0 32768

PA2 1 16384

PA3 2 8192

PF1 3 4096

PF2 4 2048

PF3 5 1024

PF4 6 512

PF5 7 256

PF6 8 128

PF7 9 64

PF8 10 32

PF9 11 16

PF10 12 8

PF11 13 4

PF12 14 2

ALL - specifies a mask of X’FFFF’

NONE - -specifies a mask of X’0000’
Note:
Specifying PF1 also specifies PF13, PF2 specifies PF14, etc.

Return Codes

A return code of 0 is issued upon normal completion of the SETEID function.

Abends

177

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

An abnormal termination may occur during execution of the SETEID function. A possible cause
is that an invalid eid argument was specified.

SNAP Function
The SNAP function can be used to write a thread dump of the application, without terminating the
application. The purpose of this function is to help debugging applications.

Format

The format for the SNAP function is:

SNAP (retcode,header,retnumber)

retcode A fullword where Com-plete places the return code.

header address of a 77 byte character string to become the dump header.
First 7 bytes are recommended to contain a message ID to be
shown in UDUMP ALL (UDUMP will prefix it with "USR",
indicating that this dump was produced using the SNAP
function).

retnumber A fullword where the dump number is returned upon successful
completion.

Return Codes:

0 dump taken

8 no dump taken (suppressed or error)

Abends:

There are no abends expected with the normal usage of this function.

TESTAT Function
The TESTAT function is used to determine whether or not the terminal operator has caused what
Com-plete considers to be an attention interrupt condition.

Since the TESTAT function tests for an attention interrupt condition, it follows that only terminal device
types that generate an attention interrupt can be used with programs that use the TESTAT function.
Normally the device types are restricted to 3270-type terminals (ENTER key) and TTY-terminals
(BREAK key).

Format

The format for using the TESTAT function is:

TESTAT (retcode)

178

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Return Codes

The following return codes are issued by the TESTAT function to indicate the attention interrupt
status caused by the terminal user:

0 An attention interrupt was not received.

4 An attention interrupt was received.

8 The terminal device in use is not an attention interrupt device.

Abends

There are no abnormal termination situations that can be directly associated with the TESTAT
function.

TIME Function
The TIME function enables the application program to obtain information about timing intervals in one of
three precision levels:

Timer units

Binary

Decimal

If time is requested in timer units, an unsigned fullword containing the number of timer units elapsed since
midnight is returned to the application program. A timer unit is defined as 26.04166 microseconds.

If time is requested in binary, a positive fullword containing the number of hundredths of seconds since
midnight is returned to the application program.

If time is requested in decimal, a signed fullword of the format X’hhmmssth’ is returned to the application
program (hours, minutes, seconds, and tenths of seconds since midnight).

The time can also be obtained by using the standard COBOL reserved word TIME-OF-DAY or the
standard PL/I functions.

Format

The format for using the TIME function is:

TIME (retcode,area,code)

179

Miscellaneous FunctionsCom-plete 6.2.1 Application Programming

retcode Required.
A fullword where Com-plete places the return code upon
completion of the operation.

area Required.
A fullword area in the working storage area of the application
program where the time returned.

code Required.
A binary halfword containing the code that specifies the type of
time being requested. Permissible values for the code are 0, 1, or
2.

0 indicates timer units.

1 indicates binary units.

2 indicates decimal units.

Return Codes

A return code of 0 is issued upon normal completion of the TIME function.

Abends

An abnormal termination may occur during execution of the TIME function. Possible causes
include:

An invalid area argument was specified;

An invalid code argument was specified;

The area argument field is not on a fullword boundary.

180

Com-plete 6.2.1 Application ProgrammingMiscellaneous Functions

Mapping Request Control Block (MRCB)
The MRCB is a working storage area defined within the application program area used for processing
mapping requests. It contains the name of a map to be used in a Com-plete mapping CALL function, plus
additional control information pertinent to both input and output operations.

The format of the MRCB is shown in the following table.

Copy code for the MRCB is provided in the Com-plete source library:

CCMRCB - Assembler

COBMRCB - COBOL

PL1MRCB - PL/I

Field Name Offset Len Description

The first 8 bytes should be:

MAPNAME 0 4 Required.

VERSION 4 1 Required. If B, then MAPMVER must be blank.

FILLER 5 3 Must be spaces.

MAPNAME 0 6 Required. Six-character map name must have device code
in the last two bytes (for example, F2).

FILLER 6 2 Must be spaces and MAPMVER must be B.

MAP-COUNT 8 2 Binary halfword. Specifies the number of maps to be kept
resident.
The default value, spaces, is the same as 2 (binary 16448,
x’4040’).
The map count field should be reset to zero (x’0000’) on
the last mapping call that uses a map so that the map is
deleted from thread storage. Failure to do this may result
in an abend S80A of the application, due to insufficient
storage.

FCTE-COUNT 10 2 Binary halfword. Specifies the number of Field Control
Table Entries (FCTEs) in the FCT.
Must be less than 16449. A value of 16448 (x’4040’) is
the same as 0.

181

Mapping Request Control Block (MRCB)Com-plete 6.2.1 Application Programming

Field Name Offset Len Description

FCE-FORMAT 12 1 Character. Must be one of the following:
S or space FCT entries are short form entries of 6 bytes
each. They contain the field name only.
L FCT entries are long form entries of 10 bytes each. They
contain the field name, an input flag, and the FDC
override field.
E FCT entries are extended form entries of 13 bytes each.
They contain the field name, an input flag, the FDC
override field, the color override field, and the symbol set
ID override.

MAP-CONCAT 13 1 Character. Must be one of the following:
N or space The map is not concatenated or addressed. The
map is accessed from the resident area of Com-plete or the
Com-plete load library chain.
A The map is addressed, and the location is specified by
MAP-ADDRESS.
C The map is concatenated to the MRCB and does not
need to be loaded.

WRITE-OPTION 14 1 Character. Must be one of the following:
A or space Write all unprotected fields.
O Write only those fields specified in the FCT.

READ-OPTION 15 1 Character. Must be one of the following:
A or space Allow all unprotected fields that have been
entered by the terminal operator to be moved into the data
area.
O Allow only those unprotected fields specified in the
FCT and those that have been entered by the terminal
operator to be moved into the data area.

TCC 16 8 Terminal control codes to be concatenated to those in the
map.

CURSOR-OUT 24 6 Field name to place cursor in during WRTM call.

CURSOR-IN 30 6 Name of the field that the cursor was found in during the
READM call.

RETURN-CODE 36 2 Binary halfword. Return code from the last READM or
WRTM call.

182

Com-plete 6.2.1 Application ProgrammingMapping Request Control Block (MRCB)

Field Name Offset Len Description

ENTER-CODE 38 2 Alphanumeric codes or numeric codes to indicate which
terminal interrupt key was pressed. With the exception of
the alphanumeric codes TR and SP, the alphanumeric
codes signify those keys that do not transmit data.
Numeric codes indicate data transfer, if data was entered.
space No data entered.
CL Clear key entered.
TR Test request entered.
SP Selector pen interrupt.
SC ID card reader.
A1 through A3 through keys entered.
00 Normal entry (ENTER, EOT, etc.).
01 through 24 through keys.

FIELDS-READ 40 2 Binary halfword. Count of the number of fields read.

ERROR-FIELDS 42 2 Binary halfword. Count of the number of input fields
found in error (invalid keyword, alpha data in numeric
field, etc.).
This field can be multiplied by 10 to obtain the length for
writing the feedback area to the terminal.

FEEDBACKLGTH 44 2 Binary halfword. Specifies the length of the MRCB
feedback area.
This value must be less than 16449. 16448 (x’4040’) is the
same as 0.

MAPVERS 46 1 Space o scaling of map. Mapping uses the map with name
built from four characters of the MAPNAME field
concatenated with the device code of the terminal.

 B Scaling of map. Mapping uses the map with the name
given by all six characters of the MAPNAME field. The
map is scaled to fit the device code of the terminal in use.

EXPANSION 47 1 Must be spaces. Reserved for future use.

MAP-ADDRESS 48 4 Must be spaces unless MAP-CONCAT is A. If
MAP-CONCAT is A, then this is the address of the map.
The map can be located within the thread, or in the
resident area of Com-plete.

EXPANSION 52 18 Must be spaces. Reserved for future use.

FEEDBACK-AREA 70 nn Feedback area used during input exception processing.
If this area exists, the MRCB field FEEDBACK-LGTH
must be non-zero and less than 16448. When an input
exception occurs, the name of the field in error and an
exception code are placed here. The format of each entry
is "FFFFFF XX", where "FFFFFF" is the name of the field
in error, and "XX" is the exception code.

183

Mapping Request Control Block (MRCB)Com-plete 6.2.1 Application Programming

Mrcb Exception Codes
The Mapping Request Control Block (MRCB) exception codes are used to indicate input errors from a
terminal. Data entered at a terminal that conflicts with the field definition for the mapping field in which it
is entered is not returned in the buffer area. Instead, the name of the mapping field, followed by an
exception code, is listed in the feedback area.

Error Code Field Types

ND All

NN Z

NN P,H,F

OF All

UF P,H,F

MR All

184

Com-plete 6.2.1 Application ProgrammingMrcb Exception Codes

Field Control Table (FCT)
The Field Control Table (FCT) is a storage area defined within the application program area and used
during map processing. It is used by the application program to alter the display characteristics of
individual fields during output processing and to receive additional information about each field during
input processing.

The entries in a given FCT are called Field Control Table Entries (FCTEs). There are three forms of
FCTEs, only one of which will exist in any one FCT:

Short form

Long form

Extended form

The short form of the FCTE has only:

FIELD-NAME

The fields in the long form FCTE are:

FIELD-NAME
INPUT-FLAG
FDC-OVERRIDE

The fields in the extended FCTE are:

FIELD-NAME
INPUT-FLAG
FDC-OVERRIDE
COLOR-OVERRIDE
SYMBOL-SET-OVERRIDE

FCTE fields are described in the following table.

185

Field Control Table (FCT)Com-plete 6.2.1 Application Programming

Field Name Offset Len Description

FIELD-NAME 0 6 The name specified must be the same as that
specified for a field name within the map being
used. If no match is found, the name is ignored.

INPUT-FLAG 6 1 Space Input was entered and is valid.
N No data entered for this field.
I Invalid data entered.
O Overflow. Too much data entered.
U Underflow. Too many decimal places entered
S Null entry. The field was entered with no data.
This can be caused by use of the selector pen, or by
entering a keyword with no data. In either case, an
FDC of L must have been specified for this field
when the map was built, or in the
FDC-OVERRIDE entry of the FCTE.
D The DUP key was pressed for this field.

FDC-OVERRIDE 7 3 The FDCs entered here are concatenated to the
FDCs specified for the field in the map. The FDCs
is then processed. The last FDC specified takes
precedence, if conflicting FDCs exist. A special
FDC of I can be placed in any position of this field
and causes this FCTE to be ignored.
FDCs are fully described in Field Descriptor Codes

COLOR-OVERRIDE 10 2 The two-character color override replaces the
map’s color attribute for this field.

BL blue

RE red

PI pink

GR green

TU turquoise

YE yellow

NE neutral

or blank neutral

SYMBOL-SET-OVERRIDE 12 1 The symbol set override replaces the map’s
SYMBOL-SET-ID for this field.

186

Com-plete 6.2.1 Application ProgrammingField Control Table (FCT)

Field Descriptor Codes
The Field Descriptor Codes (FDCs) are used during map processing. They are specified in the map during
map creation or they can be used during program execution.

When used during map creation, FDCs are entered in either the MAPSTART definition, the MAPF
definition, or with the ATTRIBUTE UPDATE function of the UMAP utility. During program execution,
they are specified in individual FCTE entries.

The permissible FDCs are defined in the following table. The FDCs are grouped in six categories. The
FDCs in each category are mutually exclusive. Note that if more than one code from any one group is
specified, the last one encountered takes precedence.

FDC Field Type

(1)

B All

D All

H All

L Variable only

N All

V All

X All

(2)

P All

S All

U,T All

(3)

O All

R Variable only

(4)

K All

M Variable only

(5)

Y All

Z Variable only

(6)

E Variable only

187

Field Descriptor CodesCom-plete 6.2.1 Application Programming

Terminal Control Codes
The Terminal Control Codes (TCCs) are used to specify terminal control options during use of Com-plete
mapping functions. They can be specified during map creation and/or during program execution.

During map creation, TCCs are defined in the MAPSTART macro statement. During program execution,
they are specified dynamically in the TCC field of the MRCB.

Valid TCCs are defined in the following table.

TCC Definition

A Sound the audible alarm.

B Allow Com-plete to determine whether the screen should be erased before the
write.

C Always format the screen with constant fields for this map.

D Do not format the screen. Even though a new map is requested, the format will
not be written.

E Erase unprotected fields.

F Allow Com-plete to determine whether the screen is to be formatted.

K Turn off all modified data tags.

L Do not reset the keyboard.

M Do not turn off modified data tags.

N Do not erase unprotected fields.

P Start the printer.

Q Do not sound the audible alarm.

R Reset the keyboard.

S Do not start the printer.

W Do not erase the screen before writing the format (constant fields).

Note:
The use of the TCC M is supplied as a convenience to 3270 users only. Its use by applications with
devices other than the 3270s may yield unpredictable results. The use of the Com-plete conversational
mode terminal I/O feature eliminates the need for using modified data tags to store data at the terminal.

For formattable devices, the default TCCs are E, R, Q, S, B, F, and K.

The TCCs B and W function independently of codes E and N. Codes E and N are used to erase
unprotected fields, while codes B and W are used to control the erasure of the entire screen format.

188

Com-plete 6.2.1 Application ProgrammingTerminal Control Codes

Request Parameter List
The Request Parameter List (RPL) is a working storage area defined in an application program and is used
with Com-plete file I/O functions when accessing BDAM or ISAM data sets.

A separate RPL can be defined for each file to be accessed, but only one RPL is required and can be
shared by separate files, if the application program performs the necessary initialization functions.
However, if more than one file is to be accessed simultaneously, separate RPL definitions must be
established.

The format of the RPL is shown in the following table.

Copy code for the RPL is provided in the Com-plete source library: COBRPL45 for COBOL, and
PL1RPL45 for PL/I. For reasons of compatibility, the RPL format used in previous releases of Com-plete
remains available.

Fieldname Location Length Format Contents

Dec Hex

RPLIDENT 0 0 Character Identifier string ’0450’.

RPLDDN 4 4 8 CharacterDDNAME for file.

RPLNOREC 12 C 2 Binary Number of records to be processed. O is same as
1.

RPLINERR 14 E 2 Binary Record in error. Used only when processing more
than one record. Contains number of record in
error when I/O error occurs, relative to number
requested.

RPLOCNT 16 10 2 Binary Number options. Indicates how many of the next
two fields are to be included in the call.
1-Include next field
2-Include next two fields

RPLACC 18 12 3 CharacterType access. Specifies the technique to be used
for accessing a record:

SEQ Sequential

DIR Direct

BGN First record

RPLOPTN 21 15 3 CharacterKey option. Used for ISAM files only:

KEQ Key equal

KGE Key greater or equal

189

Request Parameter ListCom-plete 6.2.1 Application Programming

The following notes apply to the items contained within the RPL:

This chapter covers the following topics:

Type Access Field

Key Option Field

Type Access Field
The type access field, located at relative location 18 (X’12’), indicates the processing technique to be used
when accessing records from the file. The options are listed in the following table.

Option Explanation

SEQ Specifies that records are to be accessed sequentially. The key option field
should not be specified. For ISAM file I/O requests, the key option field is
ignored. For BDAM file I/O requests, the application program is abended if
the key option field is specified.

DIR Specifies that records are to be accessed randomly.For ISAM file I/O requests,
the number options field should be 2, and the key option field should be
initialized.For BDAM file I/O requests, the number options field should be 1.
If the key option is specified, the application program is abended,. This is the
only allowable option if accessing BDAM files using absolute addressing
(MBBCCHHR).

BGN Specifies that the first record in the file is to be accessed. If more than one
record is to be processed with this call, the number of records requested is
processed beginning with the first record in the file. Note that the key option
field, located at relative location 21 (X’15’), is used for ISAM file accesses
only. If specified for a BDAM file, the application program is abended.

Key Option Field
The key option field is specified only when records are to be processed randomly by key. In this case, the
number options field must be initialized to 2. If the key option field is not to be used, the number options
field must always be initialized to 1.

The options are listed in the following table.

Option Explanation

KEQ Specifies that the record in the file with a key equal to that of the key
supplied is to be accessed. If the key option is not specified, this is the
default.

KGE Specifies that the record in the file with a key equal to or greater than that of
the key supplied is to be accessed.

190

Com-plete 6.2.1 Application ProgrammingRequest Parameter List

Captur Record Header
Capture records are written to the Com-plete capture data set by use of the CAPTUR function. These
records can subsequently be processed using the CUCTCAPT batch utility program.

Each record written to the capture data set is prefixed by a variable-length header generated by Com-plete.
The format of this header is indicated in the following table.

Location Length Format Contents

Dec Hex

0 0 1 Binary Record identifier:

X’01’ Online user program.

X’02’ Batch user program.

X’03’ Reserved.

X’04’ TCSLOG record.

X’06’ Reserved.

X’07’ DASD security password.

X’09’ File I/O record.

X’D3’ Capture label record. See the Com-plete
System Programmer’s documentation
for the format.

1 1 3 Decimal Date in the format yydddF.

4 4 3 Binary Time in 100ths of seconds.

7 7 4 Binary X’FFFFFFFF’

11 B 3 Binary Version|Release|SMlevel

14 E 8 CharacterProgram name or user supplied ID

22 16 2 Binary TID number

24 18 4 Packed Date in the format 0cyydddF

28 1C 4 Binary Reserved for Software AG.

191

Captur Record HeaderCom-plete 6.2.1 Application Programming

Message Switching Control Block
(MESGCB)
The Message Switching Control Block (MESGCB) is a working storage area in the application program
containing the information Com-plete needs to control the processing of the MESGSW switching
function. The format and content of the MESGCB follow:

Location Length Format Contents

Dec Hex

0 0 1 CharacterL (=Last segment) space

 1 1 CharacterReserved. Must be initialized to a space.

 2 2 Binary Message identification number. Must be initialized to spaces.
Com-plete inserts the message number assigned to the
message when the first segment is sent.

 4 4 Binary Class codes. See the following table.

The class codes specified in the MESGCB are defined as bit settings in the halfword located at relative
offset four. The following table details the bit settings associated with specific class codes:

BIT POSITIONS

192

Com-plete 6.2.1 Application ProgrammingMessage Switching Control Block (MESGCB)

Class Code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1

2 1 .

3 1 . .

4 1 . . .

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 . . . 1

14 . . 1

15 . 1

16 1

Copy code for the MESGCB is provided in the Com-plete source library: COBMSCB for COBOL, and
PL1MSCB for PL/I.

193

Message Switching Control Block (MESGCB)Com-plete 6.2.1 Application Programming

Printout Spool Control Block (PSCB)
The Printout Spool Control Block (PSCB) is a working storage area in the application program containing
the information Com-plete needs to control the processing of printout spool function requests. The format
and content of the PSCB follow:

Location Length Format Contents

Dec Hex

0 0 2 None Reserved. Must be initialized to spaces.

2 2 2 Binary Reserved. Used by Com-plete to contain the printout spool
identification number. Must be initialized to zeros.

4 4 2 Binary Printout spool class codes indicated as a binary halfword bit
map.

6 6 2 Binary Logical output statement length (record length).

8 8 4 CharacterConstant: EXT1

12 C 8 CharacterListname before Open.

12 C 4 Binary Address of MCQ after Open.

20 14 4 CharacterForm-ID.

24 18 1 CharacterDisposition of printout:

D Print and delete after print.

H Hold printout until release.

L Print and hold after print.

25 19 1 Binary Reserved

26 1A 8 CharacterOutput logical driver name.

34 22 1 Binary Number of additional copies.

35 23 5 None Reserved.

The class codes specified in the PSCB are defined as bit settings in the halfword located at relative offset
four. The following table details the bit settings associated with specific class codes:

BIT POSITIONS

194

Com-plete 6.2.1 Application ProgrammingPrintout Spool Control Block (PSCB)

Class Code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1

2 1 .

3 1 . .

4 1 . . .

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 . . . 1

14 . . 1

15 . 1

16 1

Copy code for the PSCB is provided in the Com-plete source library: COBPSCB for COBOL, and
PL1PSCB for PL/I.

195

Printout Spool Control Block (PSCB)Com-plete 6.2.1 Application Programming

Getchr Information Table
The GETCHR information table is defined in an application program as a working storage area and is
initialized by executing the GETCHR function.

The information returned from the GETCHR function is terminal environment information.

Label Length Format Contents

TMGETTID 2 Binary TID.

TMGETLLN 2 Binary Maximum line length.

TMGETMDL 2 Binary Maximum device buffer length.

TMGETMLN 2 Binary Maximum number of lines.

 0 hard copy device

TMGETDEV 8 CharacterDevice type.

 See device type table in Terminal Device Type Codes

TMGETNAM 8 Character Last called by terminal or fetch.

TMGETLDT 8 Character Last load or fetched program.*

 2 Binary Undefined.

TMGETOB 1 Character Online/batch switch:*

O Online

B Batch

TMGETCTL 1 Character TID status:

C Control

U Non-control TID

 4 Binary Undefined.

TMGETCAT 4 Binary Program catalog size.*

TMGETTRU 4 Binary Program size.*

TMGETREG 4 Binary Region size.*

TMGETLPT 4 Binary Program load point address.*

TMGETIID 8 Character Installation ID.

 2 Binary Undefined.

TMGETSCH 2 Binary Default SCHC TID.

TMGETDTE 4 Packed Julian date of ULOG ON.

TMGETNOD 2 Character Access Node.

TMGETTNM 8 CharacterTIBNAME.

196

Com-plete 6.2.1 Application ProgrammingGetchr Information Table

Label Length Format Contents

TMGETUID 8 CharacterUser ID.

TMGETACC 12 Character User ID account number.

TMGETAUT 2 Binary User ID authorization code.

3 Binary Undefined.

TMGETLVL 1 CharacterCurrent COM-PASS level number 1-9; 0, if not a
COMPASS user.*

TMGETTIM 4 Binary Time of ULOG ON in 100ths of seconds.

TMGETDTA 4 Binary Amount of data sent and received by terminal since
ULOG ON.

TMGETMSG 4 Binary Amount of data sent via message switching and printout
spooling since ULOG ON.

TMGETUSR 4 Binary User field set by ULOGX1 and ULSRPSFS.

TMGETEXC 4 Binary Number of EXCPs issued since ULOG ON on non-MVS
systems. For MVS, number of SIOs issued since ULOG
ON.

TMGETTRN 4 Binary Number of transactions since ULOG ON.

TMGETTIL 4 Binary Start time of current transactions, in 100ths of seconds.

TMGETCPU 4 Binary Total CPU time elapsed since ULOG ON, in 100ths of
seconds.

TMGETTHT 4 Binary Total thread occupancy time since ULOG ON, in 100ths
of seconds.

TMGETTID 2 Binary Attaching TID.

TMGETNMP 2 Binary Number of messages or printouts queued to terminal.

TMGETENT 4 Binary Number of enters.

TMGETADC 4 Binary Total ADABAS calls.

TMGETADE 4 Binary Total ADABAS elapsed time.

TMGETADD 4 Binary Total ADABAS duration.

TMGETHNC 8 CharacterHardcopy device name.

* These fields apply only to the terminal executing the GETCHR function.

Copy code for the GETCHR area is provided in the Com-plete source; TMGETCHR for Assembler,
PL1GCTBL for PL/1; COMGCTBL for COBOL.

197

Getchr Information TableCom-plete 6.2.1 Application Programming

Com-plete Functions For Batch And Online
Programs
Com-plete allows the use of the following functions by batch programs, as well as online programs.

Function Description

ABEND Initiate Com-plete abnormal termination processing.

CAPTUR Write user-specified data to the Com-plete capture log tape.

EOJ Terminate a program, this function terminates Com-plete processing, but does
not end the batch job step.

GETCHR Obtain information about the terminal environment.

MESGSW Send a message or a message segment.

PSCLOS Logically close a printout spool data set.

PSOPEN Provide to Com-plete information required to create a printout spool data set.

PSPUT Output a record from a working storage buffer area to the printout spool data
set.

RJE Submit job streams to the batch environment for scheduling of execution.

SDCLOS Logically close an SD file.

SDDEL Delete specific SD files.

SDOPEN Create a new SD file or prepare an existing SD file for access.

SDREAD Read a fixed-length record from an SD file.

SDWRT Write a fixed-length record as an SD file.

198

Com-plete 6.2.1 Application ProgrammingCom-plete Functions For Batch And Online Programs

Terminal Device Type Codes
The terminal device type codes listed in the following table are used exclusively in the creation of
TIBTAB. The columns abbreviated SS, LL, and LD represent:

SS = Screen Size (in characters)
LL = Line Length
LD = Line Depth (number of lines)

The values listed for these items can be changed within the TIBTAB by specifications of the keyword
arguments FORMAT, LEN, and LINES when coding the TIB and LGCB macros.

Terminal
Device Code

Terminal Type Groupname SS LL LD

BATCH (Indicates that TIB may be used by batch)

TTY TELETYPE TTY - 80 26

TTYD TELETYPE (DIAL) TTYD - 80 26

274B IBM 2740 BASIC 274B - 80 26

274S IBM 2740 STAT CNTRL 274S - 80 26

274D IBM 2741 DIAL 274D - 80 25

2741 IBM 2741 2741 - 80 25

2742 IBM 2740 MODEL 2 2742 - 120 3

3270 L IBM 3270 LOCAL 3270I 1920 80 24

3270 R IBM 3270 REMOTE 3270R 1920 80 24

3275 R IBM 3275 REMOTE 3275R 1920 80 24

3278 L IBM 3278 LOCAL LOCAL 80 24

3278 R IBM 3278 REMOTE 3270R 80 24

3279 L IBM 3279 LOCAL LOCAL - 80 32

3279 R IBM 3279 LOCAL 3270R - 80 32

3284 L IBM 3284 LOCAL LOCAL - 120 20

3284 R IBM 3284 REMOTE 3270R - 120 20

3286 L IBM 3286 LOCAL LOCAL - 120 20

3286 P IBM 3286 REMOTE 3270R - 120 20

3288 L IBM 3288 LOCAL LOCAL - 132 18

3288 R IBM 3288 REMOTE 3270R - 132 18

199

Terminal Device Type CodesCom-plete 6.2.1 Application Programming

	Application Programming
	API Conventions
	
	Syntax Symbols
	Argument Coding
	Interface Linkage
	Return Codes

	Introduction to the API
	Application Programming in Com-plete
	How Com-plete Works
	Threads
	Rolling Mechanism
	COM-PASS Considerations
	Write Conversational Calls

	Specific Programming Language Considerations
	NATURAL
	COBOL
	COBOL II
	PL/I
	FORTRAN Notes
	Assembler
	CM$CALL

	The Application Programming Interface
	Overview
	Requirements for Using the Branch Entry Interface
	Differences with the Original Interface
	Relocation Issues

	Assembler Programs Using the MCALL Interface
	How to use the Branch Entry Interface
	Maintaining Re-entrancy
	Mixing the Branch Entry and SVC Interfaces
	Globally Changing MCALLs for a Module
	Macro Descriptions

	The High Level Language Interface †HLLI‡

	Terminal Functions and Paging
	Terminal I/O Functions
	Concepts
	Programming Considerations
	Program Logic
	Output Options
	3270 Terminal I/O Handling
	Device dependent I/O
	Device independent I/O

	Delimiter Lists
	Example

	Terminal Mapping
	Map Contents
	Global Data
	Field Data

	Map Names
	Device-Specific Mapping and Scaled Mapping
	Program Concepts
	MRCB
	FCT
	Buffer Area
	Output Field
	Alphanumeric and zoned decimal fields:
	Packed and binary fields:
	Input Field Processing

	Map Creation Using Macros
	MAPSTART Macro
	MAPF Macro
	MAPEND Macro

	Advanced Facilities
	Structured Fields
	Periodic Redisplay
	Time-out

	LU6.2 Transaction Programs
	Restrictions

	Syntax
	Device-Independent Input: READ
	Device-Dependent Input: READS
	Parameters:
	Return Codes
	Abends

	Input Using Map: READM
	Parameters:
	Return Codes
	Abends

	Device-Independent Output: WRT
	Device-Dependent Output: WRTS
	Special Output
	WRTSF - Write Structured Fields
	READB - Write "Read Buffer"
	Parameters:
	Return Codes
	Abends

	Output Using Map: WRTM
	Parameters
	Return Codes
	Abends

	Extended Graphics Support
	Symbol Sets
	Loading Symbol Sets
	Format

	Examples
	Example 1 - Terminal-Independent I/O
	Example 2 - Terminal-Independent I/O using delimiter list
	Example 3 - Terminal-Dependent Output
	Example 4 - Terminal I/O using Map
	Screen Layout
	Map definition
	Sample Program

	Example 5 - LU6.2 TP

	Terminal Paging
	Overview
	POPEN Function
	PWRT Function
	PREAD Function
	PLIMIT Function

	Storage Access Functions and Task Management
	Adabas & External Storage Access Functions
	VSAM File I/O
	File Definitions to Com-plete
	File Definitions in Programs
	File OPEN Statements
	File I/O Operations
	File CLOSE Statements

	ISAM & BDAM File I/O (MVS Only)
	Request Parameter List
	TFDEQ Function (MVS Only)
	Format
	Return Codes
	Abends

	TFENQ Function (MVS Only)
	Format
	Return Codes
	Abends

	TFGET Function (MVS Only)
	Format
	Return Codes
	Abends

	TFGETU Function (MVS Only)
	Format
	Return Codes
	Abends

	TFPUT Function (MVS Only)
	Format
	Return Codes
	Abends

	TFPUTU Function (MVS Only)

	SD Files
	SDOPEN Function
	Format
	Return Codes
	Abends

	SDWRT Function
	Format
	Return Codes
	Abends

	SDREAD Function
	Format
	Return Codes
	Abends

	SDCLOS Function
	Format
	Return Codes
	Abends

	SDDEL Function
	Format
	Return Codes
	Abends

	CAPTUR Function
	ADABAS Interface
	Multiple ADABAS Nuclei
	Return Codes Abends

	Task Management
	ATTACH Function
	CODEL Function
	COEXIT Function
	Abends

	COLINK Function
	COLOAD Function
	COXCTL Function
	FETCH Function
	LOAD Function
	SCHED Function

	Message Switching and Printout Spooling
	Message Switching/Printout Spooling
	Overview
	Message Switching
	Message Segmentation
	Destination Codes
	Class Codes
	Message Routing
	Alternate Terminals
	Disabled Terminals
	Inoperative Terminals
	Message Recovery
	Message Switching Control Block (MESGCB)
	MESGSW Function
	Format
	Return Codes
	Abends

	Printout Spooling
	Destination Codes
	Class Codes
	Disabled, Inoperative, and Alternate Terminals
	Printout Spool Control Block (PSCB)
	PSOPEN Function
	Format
	Return Codes
	Abends

	PSPUT Function
	Format
	Return Codes
	Abends

	PSCLOS Function
	Format
	Return Codes
	Abends

	NSPOOL - Printout Spooling With Natural Front-End
	Overview
	NATURAL Front-end

	NATURAL Security Definitions
	NSPOOL Definitions and Authorizations
	Printer Groups
	User Authorization
	Input Interdependencies
	Default Authorization

	NSPOOL User Functions
	General PF Key Assignments
	List Queue
	SQ Function
	SQ/LQ
	Route to System Printer
	List Queue Commands

	Printer Overview
	SP
	SP/PO
	Printer Overview Commands

	NSPOOL Display Printout on Screen (SHOW or QUEUE Function)
	Printout Display Commands

	Customization
	Parameter Areas
	SPWK01-A
	SPCB01-A
	SPQI01-A
	SPQO01-A
	SPQO02-A

	Supported Functions and Subfunctions
	General Programming Considerations
	Printer Overview
	Matrix:
	Key:

	Operate Printer
	Matrix:
	Key:

	Position Current Printout
	Matrix:
	Key:
	EXCEPTION!

	List Queue Overview
	Matrix:
	Key:

	Printout Display
	Matrix:
	Key:

	Modify Queue Entry
	Matrix:
	Key:

	Miscellaneous Functions and Function Tables
	Miscellaneous Functions
	ABEND Function
	ABEXIT Function
	CMPOST Function
	CMWAIT Function
	COMSTOR Functions
	CSC Control Block

	DATE Function
	EOJ Function
	FREEMAIN Function
	GETCHR Function
	GETMAIN Function
	GETSTOR Function
	MODIFY Function
	RJE Function
	ROLEVT Function
	ROLOUT Function
	SETEID Function
	SNAP Function
	TESTAT Function
	TIME Function

	Mapping Request Control Block (MRCB)
	Mrcb Exception Codes
	Field Control Table (FCT)
	Field Descriptor Codes
	Terminal Control Codes
	Request Parameter List
	Type Access Field
	Key Option Field

	Captur Record Header
	Message Switching Control Block (MESGCB)
	Printout Spool Control Block (PSCB)
	Getchr Information Table
	Com-plete Functions For Batch And Online Programs
	Terminal Device Type Codes

